
2 CROSSTALK The Journal of Defense Software Engineering July 1998

I read with interest “Slaying the
Software Dragon,” (CROSSTALK, May
1998) especially the figures that indi-
cated an underwhelming response to the
course offerings. I offer a slightly differ-
ent viewpoint and analogy: Approxi-
mately 100 years ago, the U.S. Cavalry
found itself unable to effectively deal
with the Apache. The Army’s tactical
leaders (managers), having studied tradi-
tional war fighting (management), were

having trouble understanding a “differ-
ent” enemy (software development). The
most effective response was not to try to
make each of its tactical leaders (acquisi-
tion managers) into an effective tracker,
but to hire the enemy: Apache Indian
scouts. Today, we call these independent
validation and verification agents (soft-
ware projects) or validation, verification,
and accreditation agents (software mod-
els)—experienced developers hired to

search through the horse dung (docu-
ments) left by the enemy (developer) to
try to fathom the enemy’s intent (look
for the issues, weaknesses, problems, etc.,
behind the smoke, mirrors, hand wav-
ing, and slideware).

Perhaps we should look at ways to
use these individuals more effectively.

Joe Saur
Fort Monroe, Va.

Apache Lessons in Acquisition Management

From the Publisher

Letter to the Editor

The success of a
project is often depen-
dent on the organiza-
tional processes and
capabilities that cut
across multiple disci-
plines. Several organi-

zations already use one or more Capabil-
ity Maturity Models (CMMs) to guide
their process improvement efforts. How-
ever, process-related CMMs have lacked
integration among disciplines, and pro-
cess assessments have been known to
result in inconsistent findings. Improve-
ment efforts based on unique CMMs
have resulted in suboptimization, confu-
sion, and potentially unnecessary ex-
penditure of process improvement re-
sources [1]. These are some of the
driving needs for the current collabora-
tive effort to integrate CMMs (dubbed
CMMI) that is sponsored by the Office
of the Secretary of Defense for Acquisi-
tion and Technology, with participation
by other government organizations, the
Software Engineering Institute, and
industry.

The CMMI team will produce a set
of integrated products to support process
and product improvement. It will in-
clude a framework to generate CMMI

products, individual capability models,
training and assessment products, as well
as a tailoring guide, and a glossary to
reflect common terminology among
disciplines [2]. The CMMI team will
develop a framework that will generate
both staged and continuous capability
models as explicitly specified in the
CMMI “A” specification. The CMMI
product suite is intended to preserve
government and industry process im-
provement investments, enhance use and
generation of multiple models, and
accommodate considerations for consis-
tency with Department of Defense di-
rectives and industry (Electronic Indus-
tries Alliance) standards as well as
support international standards.

By integrating process areas among
disciplines, the CMMI will better sup-
port the institutionalization of enter-
prise-wide process improvement, cutting
across disciplines that are often compart-
mentalized within organizations. The
Federal Aviation Administration has
already demonstrated the value of using
continuous representation of an inte-
grated CMM with staging guidelines
(http://www.faa.gov/ait/sepg). The use
of continuous representation with stag-
ing guidelines leaves it to organizations
to decide priority and ordering of pro-

cesses to improve based on business
objectives. It facilitates, through staging,
a summarization of organizational matu-
rity level based on experience with suc-
cessful process improvement priorities.

Industry is a major proponent and
participant in this CMMI effort, and
industry involvement is increasing in the
number of CMMI stakeholder review-
ers. There are opportunities for partici-
pation in CMMI pilot projects planned
to start in January 1999 that offer ben-
efits to organizations. Those interested
in learning up-to-date information
about the CMMI, reviewing CMMI
frequently asked questions, or who de-
sire to participate in CMMI pilot
projects should go to the SEI Web site,
http://www.sei.cmu.edu, and select the
CMM section. ◆

References
1. Schaeffer, Mark D., “Capability Matu-

rity Model Process Improvement,”
CROSSTALK, Software Technology Support
Center, Hill Air Force Base, Utah, May
1998.

2. Schaeffer, Mark D., Philip Babel, Jack
Ferguson, et al., “Overview of the Inte-
grated Capability Maturity Model
(CMMI) Development Project,” panel
presentation, Tenth Annual Software
Technology Conference, Salt Lake City,
Utah, April 22, 1998.

CMMI Supports Enterprise-Wide Process Improvement
Lt. Col. Joe Jarzombek

ESIP Director

Capability Maturity Model and CMM are regis-
tered trademarks of Carnegie Mellon University.

CROSSTALK The Journal of Defense Software Engineering 3July 1998

With acquisition reform,
reengineering, downsizing,
rightsizing, and old-fash-

ioned turmoil, a lot of interest from
public and private sectors now focuses
on how we, as program managers, do
business. Because of this increased focus
and interest, many organizations are
attempting to quantify what they do.

In response to this growing inter-
est, my experience and that of many
other program managers tells me we
need to get back to the basics:
• What are we doing?
• How are we doing?
• How do we know?

Instituting planning charts, finan-
cial summary charts, and color-coded
risk and status charts are not by them-
selves marks of progress. The team
must understand and use the material.
To do that, we need to employ the
basics—planning a solid program
using common sense and sound man-
agement techniques.

Some organizations appear to have
lost sight of that. They are doing solid
planning from a technical perspective
but not applying those same disciplined
techniques to the business side. The
tools we use to plan, organize, and evalu-
ate should be just that—tools ... but not
an end in themselves. The rules that
follow are not new, exciting, or particu-
larly insightful, but they work, and may
help you avoid some of the problems
and pitfalls in getting the job done.

Step 1 – Do Not Try to Impress
People by Building a Better
Mousetrap
In trying to express this concept in
ways that are new and different, words
fail me. Tired old phrases come to
mind such as “Don’t reinvent the
wheel,” and “Don’t fix what isn’t bro-
ken”—neither of which is likely to
hold anyone’s attention. Regrettably,
there is no fascinating way to say what
we all know to be true: The institu-
tional resistance (inertia) of “not in-
vented here” needs to be addressed
upfront. Think about it. Why not
borrow a good idea from another of-
fice, give the originator credit, improve
the process or idea, and move on? This
is much more efficient and productive
than trying to come up with that one
“brilliant idea” yourself.

With this philosophy in mind,
keep an eye out for good ideas in your
organization. As the old saying goes,
“You’d be surprised what you can ac-
complish if you don’t mind who gets
the credit.” So see what works, and
keep it. If what you are doing or what
you have tried is not working, start
with Step 2.

Step 2 – Know Who the
Customer Really Is
The customer is the one who is put-
ting up the financial resources, right?
Most of the time. As an example, the
customer for U.S. Air Force fighters
and bombers is the Air Combat Com-
mand (ACC). But when it comes to
developing requirements, the acquisi-

tion community is ACC’s customer. If
the war fighter’s requirements are not
nailed down, how can you acquire a
system that they will be happy with?
Moreover, if the requirements con-
stantly change and customers do not
seem to know what they want, we have
“requirements creep.” And depending
on who is in the meeting, require-
ments creep may be a noun or a verb.

Once your customer has under-
standable and definitive requirements,
you must know what the cost, sched-
ule, and performance parameters are
and baseline the program. Without it,
you will not be able to communicate
what is required to successfully fulfill
the requirement, and others will not
know what to expect in return. Put
another way, a baseline serves as the
vehicle to establish and track a com-
mon set of expectations. When devel-
oping a program baseline that incorpo-
rates cost, schedule, and performance,
do not forget that your project inte-
grates with many other products and
processes such as training, spare parts,
or maintenance equipment.

Some people develop a baseline as a
document. I like to think of it as a set
of briefing charts (which helps me stifle
my verbosity). Perhaps you will find, as
I did, that most of the benefit of a
simple baseline document (I recom-
mend keeping it to six to eight charts)
is in building it and coordinating with
all the affected agencies, including the
customer. As a forcing function, the
baseline applies discipline in bringing

Rules a Program Manager Can Live By
Getting Back to the Basics

Col. Wayne M. Johnson
U.S. Air Force

This article is based on an article that first ap-
peared in Program Manager, November/Decem-
ber 1997.

Program managers who focus on customers, money, and common sense are
more likely to succeed than those who do not. This article offers 10 basic steps
toward better program management that emphasize those three points of focus.

Project Management

4 CROSSTALK The Journal of Defense Software Engineering July 1998

the program together and ensures that
its strategy is supportable.

Step 3 – Get a Second Opinion
Suppose you went to the doctor for a
standard check-up and received a dire
prognosis. You would likely seek a
second opinion. Likewise, if your pro-
gram receives word that it has a sud-
den illness, but it seems fine, get a
second opinion. I know of a program
manager who went ballistic after hear-
ing that a piece of government-fur-
nished equipment (GFE) was not
going to be available for his program.
After being yelled at by the customer,
he finally had to elevate it to his super-
visor. The supervisor then called a
different “expert” point of contact and
found there was plenty of the GFE
item available.

The lesson to be learned from this
true situation again takes us back to
the basics. When things unexpectedly
look bad, get a second opinion. The
same is true for those times when you
believe things are headed the wrong
direction and your single point of
contact says, “Don’t worry, be
happy”—get that second opinion.

Step 4 – Realize All Software
Development Is Moderate Risk
“What you see is not always what you
get” is a general rule of software devel-
opment. Although debugging and
testing a program may reveal many
hidden problems, these actions alone
cannot guarantee that all problems are
detected. Historically, software has
proven itself difficult to scope and
insidiously susceptible to requirements
growth. Keep this axiom in mind:
“The more complex your solution, the
more vulnerable it is to simple prob-
lems.” Be wary of magicians who
claim that previously discovered hard-
ware problems can be fixed with a
simple software modification. One
senior program director once told me
his rule of thumb: No matter where
you are in software development, you
are always two years behind schedule
and need twice as much money. Ex-
pect it, plan for it, and manage it.

Step 5 – Know Your Program’s
Status
Many organizations use color codes to
communicate the status of the project.
I have always been fascinated by the
variety of definitions and the finite
detail program managers use and con-
fuse to define whether a program,
project, or functional area is “green,”
“yellow,” or “red.” Depending on the
management philosophy of the organi-
zation, green, yellow, or red is usually
the program manager’s assessment.

For example, problem N may be
coded different colors by different
program managers. If the program is
one month behind, do you evaluate it
red, yellow, or green? The color de-
pends on when the customer needs it.
Following are three simple definitions
to consider when preparing color-
coded future assessments.
• If the program or project fills your

day, keeps you challenged, and is a
reason why they need you in gov-
ernment service, the program is
green.

• If you ponder the day’s events on
the drive home and know that your
boss will be irritated to hear from
someone other than you about the
latest “fun” you are having, the
program is yellow.

• If you find yourself waking up in a
cold sweat in the middle of the
night considering other employ-
ment options, hoping that your
boss can help you fix all the prob-
lems, the program is red.

Step 6 – Follow the Money
Everything you do is connected to
money, and if you did not control the
funding no one would pay any atten-
tion to you. Start thinking of financial
planning documents as program man-
agement planning documents because
that is what they are. Always be famil-
iar with your financial situation. For
example, I have seen unintentional
problems arise when several functional
areas believed they were entitled to the
same chunk of money but did not talk
to each other about who really owned
it. If you depend on too many good
things to happen to be successful, you

probably will not be. If you are not
managing the money, you are not
managing the program. That is always
the bottom line.

Step 7 – Summarize Meetings
Have you ever sat through a one-hour
meeting listening to all the attendees
speak their mind? At the end of the
meeting, with 15 suggestions from six
people, it is difficult to know who
plans to do what unless the program
manager summarizes for the group
what the course of action will be. If, at
the end of your meeting, you have not
summarized a plan of action, you
might find yourself rescheduling an-
other meeting. Get into the habit of
summarizing each meeting and save
time, effort, and a lot of headaches
down the road.

Step 8 – Use the “Aunt Agnes”
Test
A situation develops that requires you,
the program manager, to make a deci-
sion. But does the course of action you
are about to select make sense? In
acquisition, we have surrounded our-
selves with processes, integrated acro-
nym lists (IAL), and program manage-
ment review teams, all of which can
deprive us of our common sense.

I have been taught to use this
simple test: Pretend you have an Aunt
Agnes who owns a farm in Iowa, where
she grows corn. Can you explain the
program and your decision to her?
Would she understand it? Does it
make sense? Can you defend the
course of action to her? If the answer
to any of these questions is “no,” re-
think your strategy because you are
about to lose your way. And do not
bother look up IAL—I made that up
to show how unnecessary complexity
will only confuse Aunt Agnes and your
customer.

Step 9 – Make a Decision
We have all sat through meetings
where a detailed, insightful discussion
about the pros and cons of a project
occurred to the nth degree. But in the
end, no one knew what course of ac-
tion to which the program manager

Project Management

CROSSTALK The Journal of Defense Software Engineering 5July 1998

agreed. What did he want? Did she
say, go ahead? The difference between
the program manager and a lot of
process-oriented staff help is that you
are required to make decisions. Do not
forget that. If you do, you will be
without a job.

Sometimes no decision is the worst
decision. Be careful not to get caught
in this type of organizational paralysis.
One senior leader once advised that
“you need to go into the job assuming
you have already been fired—only
then will you be willing to make the
right decisions.” Take in the important
details, look at the alternatives, under-
stand the options, then make a deci-
sion and move on.

Step 10 – Manage, Do Not
Micromanage
Stay focused on the goals and ideas
that are important to you, and stick to
the basics. Watch the details without
micromanaging your team. You cannot

always be there to answer the ques-
tions, so make sure your team knows
what is going on. Treat everyone with
respect. And have fun.

Being a program manager is a lot
like being a utility infielder in baseball.
You know what will make your effort
successful, and you have a team of
functional experts to help you along
the way. Let them know what you
expect from them, and chances are
they will not let you down. Remember,
these jobs are 10 percent expertise and
90 percent common sense. To win the
game, stick to the basics, focus on your
goal, and rely on teamwork.

Keep It Simple
You do not get paid more for making
it complicated, so stick to the basics.
The tools for becoming a more effec-
tive program manager that I have out-
lined in this article are quite simple.
Every one of us has thought of them,
but the working process can still be

confusing. When you think you are
losing control of a project, check to see
if you are following these tips.
Chances are you will quickly recognize
how to fix it. ◆

About the Author
Col. Wayne M. Johnson was formerly
chief of F-16 Programs for Turkey, Aero-
nautical Systems Center (ASC), Wright-
Patterson Air Force Base, Ohio, where
he managed the 240 aircraft, Foreign
Military Sales Turkish F-16 weapons
system. A command pilot with 2,800
hours of flying time, Johnson was the
1995 winner of the Air Force Associa-
tion/ASC Sylvester Award for Program
Management. In 1996, he graduated
from the Advanced Program Manage-
ment Course, Defense Systems Manage-
ment College. He is currently program
director at the Joint Airborne Signals
Intelligence Program Office.

Voice: 937-255-9968 DSN 785-9968

Rules a Program Manager Can Live By: Getting Back to the Basics

Join the Software Technology Support Center’s (STSC) Sys-
tems Engineering and Development team in Park City, Utah
for two sessions, the first in Sep-
tember 1998 and again in Octo-
ber 1998 for System Engineering
Miniworkshops. Workshop topics
include risk management, system
engineering requirements, reviews,
testing, metrics, and object-ori-
ented Unified Modeling Language.
The workshops are available to
government organizations, and
government room rates will be
available.

The workshop dates are Sept.
21-30 and Oct. 19-28. Instructors are the STSC Systems En-
gineering and Development team (Les Dupaix, Dave Cook,
and Jim Van Buren).

Cost per person will be based on the courses attended:
one day, $300; two days, $550; three days, $800; five days,

$1,300; eight days, $2,000. Group dis-
counts are available. Students are re-
sponsible for travel costs. Funding is via
a valid intergovernment organization re-
imbursable funding document, such as
an Air Force Project Order Form 185 or
a Military Interdepartmental Purchase
Request (DD Form 448). Funding ques-
tions should be directed to the STSC
funding point of contact, Dan Arnow,
at 801-775-2052 or DSN 775-2052.

Contact the STSC for schedule in-
formation and cancellation policy.

Les Dupaix 801-775-5555 ext. 3088 DSN 775-5555 ext. 3088
Dave Cook 801-775-3055 DSN 775-3055

Jim Van Buren DSN 801-775-3017 DSN 775-3017

Rocky Mountain Higher Education
System Engineering

6 CROSSTALK The Journal of Defense Software Engineering July 1998

Typically found in the toolbox
of project management are tech-
niques for cost estimation, risk

management, meeting staff require-
ments, and establishing work break-
down structures. These techniques
represent essential project management
skills usually acquired through formal
courses, reading, or on-the-job training.
These learning methods often overlook
the “softer side” of project manage-
ment. Understanding this side consti-
tutes yet another tool just as critical to
project success as more formal ones. A
manager’s ability to effectively maintain
morale, motivate the team, and use
resources determines whether team
members have a sense of pride in their
project and feel ownership of it.

This article highlights some tech-
niques I have used to address the human
side of project management. Some focus
on ensuring everyone on the team feels
comfortable with their role. Others
establish and maintain good team mo-
rale. All help a project maintain momen-
tum toward a successful conclusion.

Soft Project Management
Techniques
A new project is about to commence.
The team consists of senior engineers
and computer scientists, all with many
years of experience in the tools that will
be used on the project. This team also
has a history of working together and
keeping one another well informed. “A
dream team,” you think to yourself,
and with good reason. Such a team is
not likely to be found in the real world.
It is much more probable that a project
will have a blend of junior and senior
employees with varying experience
levels. Furthermore, the team will prob-
ably have little history with one another

and with the technologies, thus requir-
ing much groundwork to initiate the
project.

Pair Team Members
Getting junior employees comfortable,
up to speed, and productive quickly is
definitely a challenge. Formal training
helps, but this requires time and money
that may not be available. In this situa-
tion, I pair junior, inexperienced team
members with those who have more
expertise. Junior persons may shadow
their mentors, observing and studying
their behavior, or the pairs may work on
a task together, with the senior person
handling the more difficult aspects and
serving as a mentor to the junior person.

This technique pays for itself in the
long run. On one project, a new devel-
oper initially played the junior role for
a few months. When another inexperi-
enced person joined the team, the first
was able to move up to the senior role
and successfully served as mentor. This
transition was a source of great pride to
the entire team.

Ensure Expert Technical Support
Dealing with today’s world of con-
stantly changing technologies can make
any reputable manager cringe. No
sooner has one committed to a suite of
tools than a new and better solution
becomes apparent. In the case of tech-
nologies like Java, new releases occur at
short intervals—a daunting prospect
for developers. On one of my projects,
the team chose Java for its many advan-
tages including hardware independence
and enhanced programmer productiv-
ity, yet no one on the team had previ-
ously used this language. To manage the
risk involved, I took steps to ensure that
expert technical support for Java was

available and accessible to the team.
This came in two forms: First, I hired a
Java mentor who provided guidance to
the rest of the team, introduced new
Java tools, and reviewed all Java soft-
ware. Second, team members were also
encouraged to maintain a close relation-
ship with the vendor to stay aware of
the latest developments and to provide
them with requirements for new fea-
tures. With this strategy in place, Java
increased the team’s productivity rather
than proving to be an obstacle.

Assign People with Care
Have you ever felt that management
views developers as interchangeable
game pieces they can arbitrarily move
between projects? Many times, I have
seen people placed in critical positions
based on their job title rather than their
skills. Putting team members in posi-
tions they cannot handle usually leads
to negative consequences in terms of
schedule, quality, and productivity. Just
because a person is hired as senior com-
puter scientist does not mean that per-
son can take on every task successfully
and with little monitoring. Admittedly,
there will be times when it is necessary
to assign team members to tasks for
which they do not have the right exper-
tise. I do this with caution—only with
people who have proven track records
and in whom I have great confidence. I
do not expect those with newly ac-
quired skills to take on critical or com-
plex tasks.

Consider work habits when assign-
ing tasks. Some people work faster than
others, thrive on challenge, and with-
stand pressure well. Others proceed at a
more cautious pace and prefer to work
on the familiar. Take all these factors
into account to prevent situations in

The Softer Side of Project Management
Janice Strauss

National Security Agency

Many project managers limit themselves to techniques they have acquired through for-
mal channels, which decreases their chances for success. I contend that there are many
“softer” techniques available that have a great impact on a project. In this article, I
share some of the techniques I use to increase the likelihood of achieving project goals.

CROSSTALK The Journal of Defense Software Engineering 7July 1998

which employees are frustrated with
their assignments and cannot make a
contribution.

Build a Project History
Every project uses a schedule to com-
municate its milestones and to guide
development efforts. This provides a
means to monitor progress. It is crucial
to create a schedule that is both realistic
and accurate. There are many docu-
mented techniques to scientifically do
this. These include estimation tech-
niques such as Constructive Cost Mode
(COCOMO), Delphi Techniques, and
Gantt Charts.

When I was faced with developing a
schedule for my last project, COCOMO
was suggested as a useful technique. But
COCOMO requires parameters such as
lines of code, which were not at my
disposal. Past performance also might
have been a useful predictor, but most of
the project team was new—to both each
other and the technologies. So I decided
to build a project history, albeit a brief
one. The team worked without a sched-
ule for about three months. Throughout
this period, we closely monitored and
recorded progress on assigned tasks.
Both the team members and I gained a
sense of each person’s capabilities, and
we based our schedule on this knowl-
edge. I met with team members to
review their assigned tasks and to esti-
mate how long each task would take.
We compared performance to these
estimates on a weekly basis. Within a
few months, team members could pre-
dict their progress with precision.

There were other benefits derived
from this schedule-building technique.
The team became intimately aware of
the schedule and regularly consulted it.
Also, the schedule had buy-in from all
members because the team built it. As a
result, motivation to achieve milestone
dates was extremely high.

Minimize Meetings
In the life of a project, it is a rare day
that does not include at least a few
meetings. No matter how justified their
purpose, meetings tend to steal valuable
time from designing and developing a
product, which is the real business at

hand. Most team members would
rather be doing their “real” work and
regard meetings with disdain. To com-
bat this bombardment of meetings, one
solution is obvious: minimize their
number.

This is not a trivial feat. Gathering
requirements, participating in design
and code inspections, attending rel-
evant briefings, and taking part in sta-
tus reviews are essential software project
activities. I handled this challenge by
requiring only a small subset of the
entire team at different meetings. For
instance, inspections included only the
people necessary to ensure coverage in
the areas of databases, programming
languages, logic, or quality assurance.
Sometimes a desk review took the place
of an inspection. A few team members
had dedicated roles; I designated one to
be the customer interface and he repre-
sented the team at all requirements
meetings.

The exception to this policy is
project status reviews. Valuable infor-
mation-sharing and coordination of
tasks occurs at these reviews, so atten-
dance by all team members should be
mandatory.

Keep the Team Satisfied
The magic bag of project management
tricks amounts to naught without the
team’s dedication and enthusiasm.
These people put in long, hard hours to
get a product out the door. The project
manager must create a stress-free, posi-
tive work environment. Techniques that
foster such an atmosphere include
showing appreciation, injecting humor
whenever possible, and empowering
team members.

Project managers should take every
opportunity to show their appreciation.
The power of cash awards is undeni-
able, yet these may be unavailable for
fiscal or contractual reasons. For teams
that consist primarily of contractors for
whom cash awards are not available,
another way must be found to inform
their companies of their superior ef-
forts. At significant milestones, I
awarded individuals letters of apprecia-
tion and sent a copy to their supervi-
sors. In all cases, the employees and

their companies were delighted to re-
ceive this recognition.

A little humor goes a long way and
should be dispersed in large doses.
When an early prototype neared
completion, software samples from each
team member were analyzed by the
Software TestWorks tool, which rates
programming style and performs cover-
age analysis. Much to my delight, all
code received high marks. To celebrate
this achievement, I awarded the pro-
grammers a mock Certificate of Excel-
lence for their efforts. Another light
moment occurred during testing when
the team was on an emotional roller
coaster. To alleviate the tension, I de-
cided to recognize the person who was
responsible for the hundredth software
discrepancy. Everyone eagerly antici-
pated this event, and when it finally
occurred, I presented the team member
with a token of appreciation. Although
work continued uninterrupted, these
light moments lifted the cloud of stress.

Empowering team members reaps
many benefits. It provides them with
ready access to all the information they
need to do their jobs. Within well-
defined boundaries, I allowed develop-
ers to directly contact customers and
vendors when the situation called for it.
Not only did this free me for other
activities, but also fostered a trusting
environment in which the team felt
both unfettered and motivated.

Conclusion
In today’s pressure-cooker environment,
projects need all the help that can be
mustered. Following a cookbook ap-
proach to project management prob-
ably is not the best recipe for success.
Leaders must use every technique at
their disposal to achieve their project
goals. The tools presented in this article
are meant to complement those usually
found in courses and texts. Project
managers need to select those tools with
which they feel the most comfortable,
while remembering that project man-
agement is as much an art as it is a
science. Keeping more human concerns
in mind will help projects overcome
challenges and attain success. ◆

The Softer Side of Project Management

8 CROSSTALK The Journal of Defense Software Engineering July 1998

About the Author
Janice Strauss has been employed at the
National Security Agency as a senior
computer scientist for more than 13
years. She has worked in a variety of
positions, most recently as a project
manager. She is also actively involved in

software improvement initiatives within
her current organization. These have
included leading a Requirements Man-
agement Technical Working Group as
well as initiating a Software Process
Information Exchange group, which

Project Management

provides a forum to trade development
tools, techniques, and best practices.

National Security Agency
9800 Savage Road
Fort Meade, MD 20755
Voice: 301-688-0994
E-mail: gusstr@erols.com

The Software Technology Conference (STC), spon-
sored by the U.S. Air Force, Army, Navy, and Marine
Corps, and Defense Information Systems Agency, has
successfully reached another milestone, completing its
tenth annual conference April 19-23 in Salt Lake City,
Utah. This year, more than 3,300 people from 16 nations
met to exchange information, gather ideas, and draw from
presentations by leading experts in software and informa-
tion technology. The conference theme, “Knowledge Shar-
ing – Global Information Networks,” was likewise
reflected in the displays from more than 300 vendors in
the Salt Palace Convention Center Exhibition Hall and
during vendor presentations.

Defense and industry leaders and other professionals
agree, “Outstanding conference! … STC sets the pace.”
Dr. Helmut Hellwig, deputy assistant secretary for science,
technology, and engineering, Office of the Secretary of the
Air Force for Acquisition, said at the conference, “We
must dedicate ourselves to partnerships of people and
organizations in government, industry, and academia. This
will enable us to continue to manage acquisitions within
the resources available and will also enable industry to
make use of its past performance record, experience in
the software domain or product line, and mature software

Report from STC ’98
development process. This is the tenth year of the annual
Department of Defense Software Technology Confer-
ence. … The conference provides a very unique opportu-
nity for government, industry, and academia to form
those partnerships vital to achieving software acquisition
success. These partnerships are vital to providing Ameri-
can war fighters the right information in the right place,
at the right time. The conference also provides a time for
professional development, as attendees have the oppor-
tunity to learn more about the many faceted disciplines
of software and information acquisition and engineering.
Both partnerships and professional development are
important aspects of ensuring our forces, industry, and
country are prepared for the challenges that lie ahead in
the new millennium.”

Next year’s conference will continue this tradition and
set the stage for software and information professionals
as we prepare to enter the new millennium. The theme
for STC ’99 is “Software and Systems for the Next Mil-
lennium.” The conference co-sponsors look forward to
seeing everyone May 2-6, 1999.

Dana Dovenbarger
Conference Manager

dovenbad@software.hill.af.mil

CROSSTALK The Journal of Defense Software Engineering 9July 1998

A few years ago marked the
rollout of what could have been
 called a Titanic of military

projects, except the original Titanic was
ahead of schedule when it sank. Hun-
dreds of millions of dollars over budget
and years behind schedule, the first
phase of this huge military system was
finally “tossed over the wall” and over
the top of a network of separate pro-
grams used by thousands of practition-
ers. Although long hampered by quality
problems, big hopes were again riding
on the system once it passed acceptance
testing.

The intended users refused to use
the system. It lacked features they said
were essential to their jobs while requir-
ing steps they considered unnecessary
or burdensome. The project eventually
died a visible, painful death amid litiga-
tion and congressional inquiries.

This failed project was not atypical of
chronic problems in the software indus-
try. According to the Standish Group
[1], in 1995, U.S. government and busi-
nesses spent approximately $81 billion
on canceled software projects, and an-
other $59 billion for budget overruns.
Their survey claimed that in the United
States, only about one-sixth of all
projects were completed on time and
within budget, nearly one third of all
projects were canceled outright, and well
over half were considered “challenged.”
Of the challenged or canceled projects,
the average project was 189 percent over
budget, 222 percent behind schedule,
and contained only 61 percent of the
originally specified features.

Other studies have likewise con-
cluded that failure is rampant, although
not necessarily to the same degree. One

reason for the varied conclusions is that
most failed projects are never studied—
even by the organization that experi-
enced the failure. Having wasted so
much on a fruitless venture, few organi-
zations will invest more time or money
to collect and analyze additional data,
whereas any data that had been collected
may be massaged or hidden to protect
careers or reputations. Thus, informa-
tion about project failures often relies
heavily on subjective assessments. This
article is no exception.

For this article, a failure is defined
as any software project with severe cost
or schedule overruns, quality prob-
lems, or that suffers outright cancella-
tion. It is based on interviews with
practitioners and consultants who were
asked to describe the causes of soft-
ware project failures with which they
have been acquainted. If there is any-
thing notable about the interviewees’
diagnoses, perhaps it is that many of
these problems have been documented
for years, but somehow they keep
cropping up. Also worth noting is that
most of the failure causes mentioned
originate before the first line of code
has been written. The failure causes are
listed in no particular order.

Poor User Input
Although the Titanic project mentioned
earlier was riddled with problems, it
ultimately failed because the system did
not meet user needs. According to Paul
Hewitt, a consultant with the Software
Technology Support Center (STSC), the
acquirers and developers of this system
had received most of their requirements
from higher-level supervisors and so-
called “users” who were not regularly

using the existing system. Although “not
invented here” syndrome contributed to
the system’s eventual lack of acceptance,
the bottom line is that the system was
inadequate for its environment.

By contrast, Hewitt has observed
successful programs in which “end users
and developers [were] working together
in the same cubicle.” Although this is
not always possible, Hewitt said projects
are likely headed for trouble unless in-
formed end users are giving meaningful
input during every phase of require-
ments elicitation, product design, and
building. The input needed by these
users has less to do with issues like screen
layouts than with how the system would
be used in the field, according to
Michael Allen Latta, chief executive
officer of Ohana Technologies Corp. in
Lafayette, Colo. He said the user should
be asking, “How do I use it over time?
Does it provide the right tools? What do
I put into it, and what do I get out?”

However, there can also be problems
if the users are too close to the require-
ments. Shari Lawrence Pfleeger, presi-
dent of Systems/Software in Washing-
ton, D.C., had just started consulting on
a large federal system acquisition when
she started to study its requirements,
which were supposedly “clean” due to
the input of highly knowledgeable users.
Even without any prior understanding of
the system or its field environment,
Pfleeger needed only a few hours to see
that the requirements were full of hidden
assumptions and conflicts.

“[The users] didn’t think of the con-
sequences of what they were requiring,”
she said. “They assumed that how things
were done in the past was how they
would always be done in the future.”

Major Causes of Software Project Failures
Lorin J. May

CROSSTALK Associate Editor

Most software projects can be considered at least partial failures because few projects meet all their
cost, schedule, quality, or requirements objectives. Failures are rarely caused by mysterious causes, but
these causes are usually discovered post-mortem, or only after it is too late to change direction. This
article is based on interviews with software consultants and practitioners who were asked to provide
“autopsies” of failed projects with which they have been acquainted. Although not a comprehensive
compilation of failure causes, this article outlines several areas that should demand your attention.

10 CROSSTALK The Journal of Defense Software Engineering July 1998

Project Management

The users assumed the elicitors under-
stood more than they did about the
users’ jobs, but this was not entirely the
users’ fault. All involved parties, includ-
ing the developers, must understand the
business of the other parties. This need
continues throughout development
process. Without this understanding, the
parties “don’t even know what questions
to ask,” Pfleeger said, and important
issues fall between the cracks.

Stakeholder Conflicts
A few years ago, a major airline, rental
car company, and some hotel chains
created an incentive plan to give custom-
ers frequent flier-type points to “cash in”
for any of the participating companies’
services. They commissioned a complex
software system to track points and
compensation. Sometime later, the soft-
ware developers needed some clarifica-
tions, i.e., with input A, does the system
choose X, Y, or Z? The stakeholders
could not agree on the answers. Forced
to acknowledge deep incompatibilities
among their business interests, the sys-
tem was canceled in an expensive, liti-
gious failure of the entire enterprise.

The stakeholders had worked under
“the illusion that everyone was going to
get everything that they wanted,” ex-
plained Tom DeMarco, principle of the
Atlantic Systems Guild. They “papered
over their differences” rather than going
through conflict resolution in the early
stages. Their differences were exposed
by the developers because “coders cannot
make an ambiguous system.”

Stakeholder conflicts can play many
different roles project failures. For ex-
ample, “some projects are ultimately
canceled because people don’t like each
other,” said Capers Jones, chairman of
Software Productivity Research, Inc.

Other projects fail because the de-
velopers do not know who the “real”
stakeholders are, according to Ed
Yourdon, chairman of the Cutter Con-
sortium. Yourdon worked with a large
mutual fund company that had been
working on a $300 million software
system. The developers had been work-
ing closely with the information tech-
nology vice president, who was per-
ceived to be the primary stakeholder for

the system. When the system ran into
some problems, it drew the attention of
the chief executive officer, who turned
out to be the real stakeholder in the
system even though he had not previ-
ously been involved with it. After seeing
the involved risks, he immediately
withdrew his support for the system.

“No one bothered to ensure that he
was going to support it,” Yourdon
explained. “No one made him aware of
problems while it was being devel-
oped.” Yourdon says many projects fail
because the project leaders do not have
a sense of who will ultimately declare
whether a project is a success or fail-
ure, and then they are “blindsided.”
He said the true stakeholders need to
hear good and bad news in “small
pieces” rather than in “one chunk.”

Other projects, especially smaller
projects within larger projects, never go
anywhere because the internal stake-
holders never agree on priorities. Watts
Humphrey, a fellow at the Software
Engineering Institute, calls these “pre-
tend projects,” meaning a few develop-
ers work on them half time or quarter
time, and nothing is ever delivered.

“They are kidding themselves that
they are working on [these projects],”
Humphrey said. “No one can work
quarter time on a project. ... They
haven’t faced the need as a management
team to decide what they are really going
to do with it. They need to put real
resources on it” rather than merely pre-
tend the project is under way.

Vague Requirements
Mariea Datiz, president of Peripheral
Visions in Houston, Texas, learned a
hard lesson about what happens when a
project is started while the requirements
are nebulous. The U.S. division of an oil
company hired Datiz’s company to cre-
ate the “first draft” of a program so that
they could impress their European coun-
terparts and justify further funding. But
the oil company officials only had a
general idea of what the program was to
do and tried to revise and refine their
ideas while Datiz’s company was work-
ing on the program.

“For every step we would take, we’d
go three backward,” Datiz said. “We

would start down one path and then
have to stop and go down another.”
Project cost and quality quickly went out
of control, her company was blamed,
and she lost the contract to finish the
job. Like many failed projects, the scope
had not been narrowed enough at the
outset to have led to any reasonable
chance for success.

One obvious solution is to establish a
reasonably stable requirements baseline
before any other work goes forward. But
even when this is done, requirements
will still continue to creep. “You can’t
design a process that assumes [require-
ments] are stable,” advises Humphrey. In
virtually all projects, there will be some
degree of “learning what the require-
ments really are while building the prod-
uct,” he said. Projects could be headed
for trouble if architectures and processes
are not change-friendly, or if there are
poorly established guidelines that deter-
mine how and when requirements can
be added, removed, and implemented—
and who will shoulder the cost of the
changes.

Poor Cost and Schedule
Estimation
It is unfair to call a project a failure if it
fails to meet budget and schedule goals
that were inherently unattainable. Like
all engineering endeavors, every software
project has a minimum achievable
schedule and cost. Fredrick Brooks sum-
marized this law in The Mythical Man
Month [2] when he stated, “The bearing
of a child takes nine months, no matter
how many women are assigned.” At-
tempts to circumvent a project’s natural
minimum limits will backfire.

This problem occurs any time some-
one “makes up a number and won’t
listen to anyone about how long other
projects took,” said Jones. According to
DeMarco, projects are often intention-
ally underbid because of the “attitude
that putting a development team under
sufficient pressure can get them to de-
liver almost anything.”

The opposite is what usually hap-
pens. For example, if a program should
realistically take five programmers one
year to complete, but instead you are
given four programmers and eight

CROSSTALK The Journal of Defense Software Engineering 11July 1998

Major Causes of Software Project Failures

months, you will have to skimp on de-
sign time and on quality checks to reach
project milestones.

“Cutting a corner that undermines
the entire foundation of the project is
not cutting the corner,” states Robert
Gezelter, a software consultant in
Flushing, New York. “There will be
heavily disproportionate costs down-
stream.” Skimping leads to weak de-
signs, dramatically higher defect densi-
ties, much more rework, and virtually
endless testing. In the end, the project
will cost more, take longer, and have
worse quality than would have been
possible if a realistic schedule and bud-
get had been followed.

According to Jones, this problem can
be easily remedied. Several estimation
tools on the market can combine numer-
ous variables to provide realistic esti-
mates within a few hours [3], even at the
early critical decision-making junc-
tures—before requirements are firm.

Skills that Do Not Match the Job
Decades ago, Morris Dovey, informa-
tion director for Check Control, Inc. in
West Des Moines, Iowa, worked on
major government software contracts
before becoming so frustrated he de-
cided to never work with government
contracting again.

“It was being made artificially diffi-
cult,” Dovey said. The technologists had
to endure what he considered avoidable
delays and mistakes because “decisions
were being made by people with no
technical expertise in the area” but had
all the authority.

Latta warns that managers can per-
form poorly if they lead projects that do
not match their strengths. “Projects
dealing with high technology need man-
agers with solid technical skills,” Latta
advises. In such projects, authority must
reside with people who understand the
implications of specific technical risks.

However, the best technologists are
not necessarily always poised to be the
best managers. “The skill set for man-
agement and programming are disjoint,”
Jones observed. The larger the project,
the more need there is for people with
excellent planning, oversight, organiza-
tion, and communications skills; excel-

lent technologists do not necessarily have
these abilities.

Skill-driven challenges are not lim-
ited to management. Poor developers
can sap productivity and make critical,
expensive errors. Generalists can also
poorly perform duties better left to spe-
cialists, such as metrics experts or testers.

The solution to skill-driven chal-
lenges is easy to define but difficult and
expensive to accomplish: Attract and
retain the most highly skilled and pro-
ductive people. “Knowledge is money,”
noted Tom Pennington, senior network
manager for The MIL Corporation in
Arlington, Va. However, there is an
eventual payback. Pennington believes a
team made up of higher-paid people
with the right specialized skills is worth
far more per dollar to an organization
than a group of lower-cost people who
need weeks or months of fumbling
through a new process or technology
before they can start being productive.

“You get what you pay for,” Datiz
echos. “You’ll also pay for what you get.”

Jones advises that “if you can’t get the
best ‘techies,’ get the best managers.” He
said good managers can often get above-
average results from average employees,
whereas great employees can have much
of their potential squandered by medio-
cre management.

Hidden Costs of Going “Lean
and Mean”
DeMarco believes project managers and
technologists are often unfairly blamed
for problems caused by people “two
levels higher.” He believes managers
and technologists are generally compe-
tent and getting better every year, but
they are “goaded” into overtime work
because of “the 1990s stupid flirtation
with lean and mean”—cutting jobs and
expecting the same work with fewer
people and less money, whether such a
feat is possible or not. DeMarco says the
the often-intentional “dishonest pric-
ing” of projects is often off by a factor
of two or four or more, requiring never-
before-seen levels of performance.

“Any failure will be viewed as a direct
result of underperformance,” he charges,
even though underperformance is “not
even a significant factor” in the failure of

most projects. Instead, he says, the failed
projects simply had goals that were
inherently unattainable.

Humphrey has observed a different
“lean and mean” problem. In many
“downsized” organizations, he says,
developers are doing their own expense
accounts, clerical work, software up-
dates, and other duties—and at a higher
labor rate and with less skill than could
be performed by support specialists.

He estimates that many software
developers are spending half their work
hours slowly plodding through tasks that
have nothing to do with developing
software. “Software people are very un-
skilled clerks,” he said. “It’s an enormous
productivity issue.”

Failure to Plan
Humphrey took charge of commercial
software development for IBM at a point
when the company was taking too long
to finish projects and was missing all its
announced deadlines. “People were
working hard, but no one had plans ...
because no one required them to make
plans,” Humphrey recalls. In response,
he required that a detailed plan be devel-
oped before any release date was an-
nounced. For the next two and one half
years, the division never missed an an-
nounced date.

“If software developers built bridges,
we’d show up at the site with some
scrap iron and say, ‘let’s start building!’”
quipped Reuel Alder, a manager at the
STSC. Alder agrees that inadequate
planning is a major reason software
projects spin out of control.

Humphrey said project managers
often do not plan because “any plan they
put together won’t meet the [desired
release] date, so they can’t plan.” Even
though detailed planning saves an enor-
mous amount of time in the long run,
Humphrey says many other managers
and developers believe it to be unneces-
sary. “They think time spent on things
like planning, design, requirements, and
inspection gets in the way of real work,
which is coding and testing,” he said.
“This comes from the view of program-
ming that the issue is to get the software
out the door. But there’s a difference
between speed and progress.”

12 CROSSTALK The Journal of Defense Software Engineering July 1998

Project Management

“We need a lot fewer heroes,” adds
Gezelter. He believes organization “hero-
ics” would frequently be unnecessary if
projects had been properly planned. “We
keep rewarding people for charging off
on suicide missions,” he said.

Communication Breakdowns
When Pfleeger was asked to consult on a
large project that was in trouble, she
asked the managers to develop a process
model for the project. She did not neces-
sarily want the model for her own use,
but wanted the managers to talk to the
developers. Once they did, they realized
the project had gotten so large that the
same code was being tested by two teams
that did not know the other existed.

Such problems are common on
large projects, especially if people are
working at different sites. In many
troubled projects, “there isn’t one per-
son who has an overview of the whole
project,” she said. Especially on large
projects, Pfleeger advises that additional
time be taken periodically to have
everyone in every position learn the big
picture. “The people working on the
pieces need to know how their one
piece fits into the entire architecture.”

Poor Architecture
Pfleeger says an example of flexible
architecture is the Patriot missile used
during the Gulf War. It was not de-
signed to intercept scud missiles, but
the software was able to be reconfigured
to support the new function. On the
other end of the flexibility spectrum
was a security program created to pro-
tect sensitive word-processing docu-
ments. Everything worked well for a
few months until the operating system
was updated. The word-processing
programs still worked, but the security
program became useless and unfixable
because much of its code was tied to
operating system features that were
dropped in the new system.

“People didn’t think ahead about
what was likely to change,” Pfleeger said.
Architecture must allow for organiza-
tion and mission changes.

Gezelter said software developers
often build with no more forethought
than the man who built a beautiful boat

in his workshop and then could not get
it out the door. “If you do [architecture]
right, no one will ever realize it,” he said.
“But if you do it wrong, you will suffer
death by a thousand cuts. Bad choices
show up as long-term limitations, aggra-
vation, and costs.”

Gezelter suggests viewing software
architecture like house-building:
“Plumb” and “wire” for features and
additions you have not thought of yet.
Then, when unanticipated needs or
business changes arise, you can add or
modify without performing the software
equivalent of “ripping apart the walls
and rebuilding them again.”

Late Failure Warning Signals
Does the following scenario by Yourdon
seem familiar? A schedule and budget
are determined “by edict by people you
were afraid to say no to,” and it is po-
litically unwise either to say or show the
estimate is far from achieveable. All
your early milestones involve diagrams,
designs, and other documents that do
not involve working code. These and
other project milestones then go by
more or less on schedule—at least as far
as upper management can tell—and
testing starts more or less on time. Not
until the project is a few weeks from
deadline does anyone dare inform the
“edict makers” that at the current defect
detection rate, the project will not be
completed even close to its deadline.

“Nobody seems to acknowledge that
disaster is approaching,” Yourdon said,
even among people who sense there is a
problem. “There is no early warning
signal.” Until more organizations aban-
don waterfall-style development in
favor of processes that demand early
working code or prototypes, he says this
scenario will continue to be familiar.

Yourdon says the above problem is
also extremely common with year 2000
work. He believes many year 2000
conversion teams, if they were allowed,
would say of their current situation:
“Within this limited time and pitiful
budget and understaffed team, sure, we
can deliver it on time—with a million
bugs in it.”

In a perfect world, lower-level people
could convince upper-level managers

that their edicts are unworkable before
the project got under way. But until this
happens, Yourdon says development
cycles need to be adopted that allow you,
at the earliest possible moment, to “pro-
vide evidence that [the project] is or is
not working.”

Conclusion
Other causes of failure could be added
ad nauseam, but the existence of addi-
tional factors is not the point. As Jones
noted, “There are myriad ways to fail.
… There are only a very few ways to
succeed.” [3] The factors of successful
project management have been docu-
mented for years—they merely need
greater attention. But if this article has
helped serve as a reality check for your
project, it will have served its purpose.
If you violate any of the principles noted
by the consultants and practitioners in
this article, you should not expect to
succeed in spite of yourself. ◆

About the Author
Lorin J. May is an
editor and columnist
for CROSSTALK: The
Journal of Defense Soft-
ware Engineering. He is
employed by NCI
Information Systems,

Inc., under contract to CROSSTALK at the
Software Technology Support Center. He
was previously an editor for two book
publishers and was a part-time freelance
writer. He has a bachelor’s degree in jour-
nalism from Weber State University in
Ogden, Utah.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-9239 DSN 777-9239
Fax: 801-777-8069 DSN 777-8069
E-mail: MayL@software.hill.af.mil

References
1. The Standish Group, “Chaos,” 1995,

http://www.standishgroup.com/
chaos.html.

2. Brooks Jr., Frederick P., The Mythical
Man-Month (20th Anniversary Edition),
Addison-Wesley, Reading, Mass., 1995.

3. Jones, Capers, Patterns of Software Systems
Failure and Success, International Thomp-
son Computer Press, Boston, Mass.,
1996.

CROSSTALK The Journal of Defense Software Engineering 13July 1998

Software development is a trou-
bling technology. Software is
highly labor-intensive, and as a

result, large software projects are among
the most expensive undertakings of the
20th century. Large software systems
cost far more to build and take much
longer to construct than the office build-
ings occupied by the companies that
have commissioned the software. Ex-
tremely large software systems in the
100,000 function point size range can
cost more than building a domed foot-
ball stadium, a 50-story skyscraper, or a
70,000-ton cruise ship.

Consider what the phrase “large
systems” means in the context of six
different size plateaus separated by an
order of magnitude for each plateau. Size
is expressed in terms of function points,
a widely used synthetic metric based on
five external attibutes of software appli-
cations: inputs, outputs, inquiries, logi-
cal files, and interfaces. The average
number of C statements found within
the typical function point is provided as
a point of reference.

One Function Point (125 C
Statements)
There are few software applications of
this size except small enhancements to
larger applications or minor personal
applications. The schedules for such
small programs are usually only from a
day to perhaps a week.

10 Function Points (1,250 C
Statements)
This is the typical size of end-user appli-
cations and also a tremendously frequent
size plateau for enhancements to existing
software. Development schedules are
usually less than one month.

100 Function Points (12,500 C
Statements)
This size is heavily populated with en-
hancements to existing applications. It is
also the practical upper limit of end-user
applications. There are few stand-alone
applications of this size in 1998, but 10
years ago there were a number of DOS
applications in this size range, such as
early BASIC interpreters. However,
there are many features of larger applica-
tions that approximate this size. Devel-
opment schedules are usually less than
six months. Individual programmers can
handle applications of this size, although
technical writers and other specialists
may be involved, too.

1,000 Function Points
(125,000 C Statements)
This size range exceeds the capabilities of
end-user development. This is a fairly
common entry-level size range for many
commercial and internal Windows soft-
ware applications. It is also a common
size range for in-house client-server
applications. Schedules for software
projects of this size are usually longer
than 12 months. In this size range, the
volume of specifications and user docu-

mentation becomes a significant con-
tributor to software costs.

Quality control also is a major re-
quirement at this size range. Applica-
tions of this size range require develop-
ment teams of up to 10 staff members,
since individual programmers cannot
usually handle the volume of code and
other deliverables. Specialties such as
quality assurance, technical writing, and
database administration are often repre-
sented on the development team. With
team development, issues of system
segmentation and interfaces among
components become troublesome.

10,000 Function Points
(1,250,000 C Statements)
Applications of this size are usually
termed “systems” because they are far
too large for individual programs. This
size range is often troubled by cost and
schedule overruns and by outright can-
cellations. Development teams of 100 or
so are common, so communication and
interface problems are endemic.

Software schedules in this size pla-
teau run from three to more than five
years, although the initial planning for
applications of this size range tends to
naively assume schedules of 18 months
or less. The volume of paperwork in
terms of plans, specifications, and user
manuals is so large that production of
documents is often more expensive than
the source code. Because defect levels
rise with application size, formal quality
control including pre-test inspections are

Project Management Tools
and Software Failures and Successes

Capers Jones
Software Productivity Research, Inc.

The construction of large software systems is one of the most hazardous activities of the business world.
The failure or cancellation rate of large software systems is over 20 percent. Of the large systems that are
completed, about two thirds experience schedule delays and cost overruns that may approach 100 per-
cent. About the same number are plagued by low reliability and quality problems in the first year of
deployment. Yet, some large systems are finished early, meet their budgets, and have few if any quality
problems. How do successful projects differ from projects that fail? Better project management and better
quality control are the most important differences between success and failure in the software world.

Copyright 1997-1998 by Capers Jones, chairman,
SPR, Inc. All Rights Reserved.

14 CROSSTALK The Journal of Defense Software Engineering July 1998

necessary for successful completion.
Configuration control and change man-
agement also are mandatory for this size
plateau.

100,000 Function Points
(12,500,000 C Statements)
Applications that approach 100,000
function points in size are among the
most troubling constructs of the 20th
century. This is roughly the size range of
Microsoft’s Windows 95 product and
also IBM’s MVS operating system. This
is also the size range of major military
systems.

Software development schedules for
systems of this size are usually from five
to more than eight years, although the
initial development plans tend to assume
36 months or less. Development teams
number in the hundreds, often in multi-
ple locations that may even be in differ-
ent countries. Communication problems
are rampant. Paperwork and defect re-
moval operations will absorb the bulk of
development costs. Formal configuration
control and change management are
mandatory and expensive for this size
plateau.

Using these six size ranges, Table 1
shows the approximate frequency of
various kinds of outcomes, ranging from
finishing early to total cancellation.
Table 1 is taken from Patterns of Software
Systems Failure and Success (International
Thomson Computer Press, 1996).

As can easily be seen from Table 1,
small software projects are successful in
the majority of instances, but the risks
and hazards of cancellation or major
delays rise quite rapidly as the overall
application size goes up. Indeed, the

development of large applications in
excess of 10,000 function points is one
of the most hazardous and risky business
undertakings of the modern world.

Software Successes and
Disasters Within Six
Subindustries
There are six major subindustries within
the software community that tend to
follow somewhat different practices and
even use different tools and program-
ming languages. In terms of their ability
to successfully build large software appli-
cations, these six subindustries in order
of rank are
• Systems software.
• Outsource vendors.
• Commercial software.
• Military software.
• Management information software.
• End-user software.

It is interesting to consider why there
are variances among these industries in
the ability to complete large software
projects. These six categories are the
most common types of software devel-
opment projects in North America,
South America, Europe, Africa, India,
the Middle East, and the Pacific Rim.

Systems Software
This category refers to applications that
control physical devices such as operat-
ing systems, navigation and flight con-
trol, telecommunication systems, process
control systems, automotive fuel injec-
tion, medical instruments, and the like.
The systems software community is
concerned with software that operates
large and complex physical devices. If
quality is not excellent, then the devices

may fail during use; therefore, the sys-
tems software community has learned
the hard way that careful quality control
is on the critical path. The systems soft-
ware community, overall, has the best
track record for building large software
applications. This community also has
the best quality control and the best
suites of quality control tools.

Outsource Vendors
These are companies such as Andersen
Consulting, Computer Sciences Corpo-
ration, Electronic Data Systems, IBM’s
Integrated Systems Solutions, and a
number of others. These companies
build software under contract for their
clients. As a class, the outsource vendors
are often better equipped and better
trained than the clients they serve. This
is not always true, but if it were not true,
fairly often, the outsource business
would fail. The outsource community
often has highly sophisticated project
management and quality control tool
suites available, significant amounts of
reusable material, and highly trained
personnel.

Military Software
These are applications constrained to
follow various military standards such
as the older DOD-STD-2167A stan-
dard or the newer MIL-STD-498.
Military applications that control weap-
ons systems tend to resemble civilian
systems software projects in terms of
the emphasis on careful planning and
quality control.

The military and defense community
is not in reality bad at building large
systems, but there is a major problem in
this domain. Military standards are so
complex and baroque that the produc-
tivity of defense applications is lower
than any other software subindustry.
The reason for low productivity has
nothing to do with coding or technical
work. Military standards trigger such
enormous volumes of paperwork that
there are roughly 400 English words
created for every Ada statement on mili-
tary software projects. The volume of
paperwork on military software projects
is almost three times that of comparable
civilian projects of the same size.

Table 1. Software project outcomes by size of project.

Project Management

PROBABILITY OF SELECTED OUTCOMES

Early On Time Delayed Canceled Sum
1 FP 14.68% 83.16% 1.92% 0.25% 100.00%
10 FP 11.08% 81.25% 5.67% 2.00% 100.00%
100 FP 6.06% 74.77% 11.83% 7.33% 100.00%
1,000 FP 1.24% 60.76% 17.67% 20.33% 100.00%
10,000 FP 0.14% 28.03% 23.83% 48.00% 100.00%
100,000 FP 0.00% 13.67% 21.33% 65.00% 100.00%

Average 5.53% 56.94% 13.71% 23.82% 100.00%

CROSSTALK The Journal of Defense Software Engineering 15July 1998

Commercial Software
This refers to the high-volume shrink-
wrapped packages by companies such as
Borland, Computer Associates, and
Microsoft. Until recently, this subindus-
try did not build many large applica-
tions, so they have had some catching up
to do. As the size of personal computer
software packages approaches the size of
mainframe software packages, the com-
mercial vendors have had to increase
their project management tools and
methods, strengthen quality control, and
in general, imitate the successful pattern
of the systems software domain.

Management Information Systems
(MIS)
This refers to the internal applications
companies build for their own use: ac-
counting systems, payroll systems, insur-
ance claims handling, banking and fi-
nancial systems, etc. The MIS
community does not have a particularly
good track record when it comes to large
systems. Often, the MIS community lags
in quality control and testing technolo-
gies compared to the other communities.
However, project management tools for
MIS companies are now increasing in
number and capability.

End-User Software
This refers to applications built pri-
vately by people for their own use,
which in the context of this article
means applications used for business or
professional purposes, not games or
home applications. Although tools such
as Visual Basic, Realizer, spreadsheets,
and SAS have expanded the capabilities
of the end-user community, there is still
a low upper limit to the sizes of applica-

tions that end users can construct.
About 100 function points is the practi-
cal upper limit and 1,000 function
points is the current maximum size of
end-user applications.

Probabilities of On-Time
Software Delivery,
Cancellations, or Delays
The first summary topic of interest is
the probability that software projects
will be finished on time, using the ini-
tial schedule estimate derived during
requirements as the basis of the com-
parison. Table 2 shows the on-time
rates but needs some explanation first.
There is an anomaly in the data because
there are no end-user applications larger
than 1,000 function points; therefore,
the 0 percent values in the end-user
column are excluded from the average
values. Also, some projects finish early,
but these are included in the on-time
percentages. The probability of an early
finish for 10,000 function points or
larger is approximately 0 percent.

As can be seen, small software
projects are comparatively well con-
trolled within all six subindustries. As
the overall size ranges grow larger, delays

and cancellations become much more
common and also more severe. On the
whole, the systems software community
and the outsource community have the
best results with systems in the 10,000
to 100,000 function point range; the
military domain comes in third place.

Probability of Termination
The next topic of interest is the prob-
ability that a project will be terminated
prior to completion. This is among the
most severe risks we face in software—
only termination with accompanying
litigation is more disastrous. Table 3
shows the probabilities of software
project terminations for the various
subindustries.

To illustrate our failures on an intui-
tive level, consider the following anal-
ogy: If building construction had the
same ratio of cancellations as software,
more than half the office buildings in
the world larger than 30 stories tall
would be abandoned before completion.
The average height of buildings in New
York City would be only three stories,
and there would be no skyscrapers.

None of the six domains have fully
mastered the ability to construct large
software systems without a significant
risk of termination or cancellation.
However, the systems software commu-
nity and the outsource community have
the best track record for large systems,
with the military software community
coming in third. The information sys-
tems community fails repeatedly for
large systems. The commercial software
world is not particularly good at the
large system plateau—though it is get-
ting better—and end users cannot do
large systems.

Table 2. Probability of on-time software delivery in six subindustries.

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 99.00% 98.00% 98.00% 98.00% 99.00% 95.00% 97.83%
10 FP 96.00% 93.00% 95.00% 97.00% 98.00% 75.00% 92.33%
100 FP 88.00% 84.00% 86.00% 88.00% 89.00% 50.00% 80.83%
1,000 FP 75.00% 65.00% 68.00% 74.00% 75.00% 5.00% 60.33%
10,000 FP 54.00% 38.00% 30.00% 47.00% 35.00% 0.00% 40.80%
100,000 FP 28.00% 15.00% 5.00% 24.00% 10.00% 0.00% 18.40%

Average 73.33% 65.50% 63.67% 71.33% 67.67% 37.50% 65.09%

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 0.10% 0.10% 0.10% 0.10% 0.10% 1.00% 0.25%
10 FP 1.00% 2.00% 1.00% 1.00% 2.00% 5.00% 2.00%
100 FP 5.00% 7.00% 6.00% 6.00% 5.00% 15.00% 7.33%
1,000 FP 12.00% 15.00% 17.00% 14.00% 9.00% 65.00% 22.00%
10,000 FP 25.00% 33.00% 45.00% 40.00% 45.00% 100.00% 48.00%
100,000 FP 40.00% 55.00% 80.00% 45.00% 70.00% 100.00% 65.00%

Average 13.85% 18.68% 24.85% 17.68% 21.85% 47.67% 24.10%

Table 3. Probability of software project termination in six subindustries.

Project Management Tools and Software Failures and Successes

16 CROSSTALK The Journal of Defense Software Engineering July 1998

Probability of Schedule Overrun
The next topic of interest is the prob-
ability that a software project will even-
tually be finished but will run later than
anticipated by a significant amount (a 5
percent slip is noticeable, more than 10
percent is painfully costly, and a 50
percent slip is a catastrophe). The initial
estimate developed during requirements
is the starting point. Table 4 shows
slippage probabilities for the six subin-
dustries.

Here, too, the low end of the soft-
ware size spectrum is generally trouble-
free and under full control. As the size
range gets larger, delays and cancella-
tions become much more common. A
contributing factor to both delays and
cancellations also grows with size: The
probability of “creeping user require-
ments.” The average growth of un-
planned, unanticipated requirements is
about 1 percent to 2 percent per month
during the design and coding phases of
typical software projects, although the
upper range of requirements creep can
exceed 10 percent in a single month.

Any of the six domains can build
small software projects with a good
probability of success. At the upper
end, no domain is fully capable. How-
ever, the systems software world, the
large outsource contractors, and the
military domains are the most experi-
enced with large applications and there-
fore have somewhat better probabilities
of succeeding.

Project Management Tools
Used on Successful Software
Projects
One of the newer uses of the function
point metric is to evaluate the complete-
ness of various kinds of software tool

suites. This approach can clearly reveal
some of the critical differences between
successful software projects, average
projects, and total failures.

It is obvious to consultants who
spend much time with large systems and
large corporations that manual methods
are not adequate for cost estimation,
schedule planning, or quality prediction.
The best-in-class organizations may have
more than 10 times the quality tool
capacities and more than 30 times the
project management tool capacities than
the organizations that fail with software.

Interestingly, there may be little if
any difference in the capacities of soft-
ware engineering tool suites. Both suc-
cessful and unsuccessful companies tend
to have in the range of 30,000 to per-
haps 50,000 function points of software
engineering and development tools. The
difference between companies that suc-
ceed and those that do not is that the
former employ effective project manage-
ment tool suites whereas the latter gen-
erally do not. Table 5 identifies the typi-
cal patterns of project management tools
noted on leading, average, and lagging
software projects.

As shown, the lagging projects tend
to be essentially manual for most project
management functions. The leading
projects deploy a notable quantity of
quality control and project management
automation. Leading projects tend to use
more than 16 times the project manage-
ment tool capacities of lagging projects
in terms of function points. In terms of
numbers of project management tools
deployed, there is about a 6-to-1 ratio
between the leading and lagging
projects.

The presence of a suite of project
management tools is not, by itself, the

main differentiating factor between
successful and unsuccessful software
projects. The primary reason for the
differences noted between lagging and
leading projects is that the project man-
agers who use a full suite of management
tools are usually better trained and have
a firmer grasp of the intricacies of soft-
ware development than the managers
who lack adequate management tools.

Bringing a large software project to a
successful conclusion is an extremely
difficult task filled with complexity. The
managers who can deal with this com-
plexity recognize that some of the cost
and resource scheduling calculations
exceed the ability of manual methods.
Managers on failing projects, on the
other hand, tend to have a naive belief
that project planning and estimating are
simple enough to be done using rough
rules of thumb and manual methods.

Summary and Conclusions
Software is intangible, but the schedules
and cost estimates for software can be
highly tangible. Software projects are still
subject to the basic laws of manufactur-
ing, and software needs to be placed on a

Systems Military MIS Outsource Comm. End-User Average
Software Software Software Software Software Software

1 FP 0.90% 1.90% 1.90% 1.90% 0.90% 4.00% 1.92%
10 FP 3.00% 5.00% 4.00% 2.00% 0.00% 20.00% 5.67%
100 FP 7.00% 9.00% 8.00% 6.00% 6.00% 35.00% 11.83%
1,000 FP 13.00% 20.00% 15.00% 12.00% 16.00% 30.00% 17.67%
10,000 FP 21.00% 29.00% 25.00% 13.00% 20.00% 0.00% 11.20%
100,000 FP 32.00% 30.00% 15.00% 31.00% 20.00% 0.00% 16.60%

Average 12.82% 15.82% 11.48% 10.98% 10.48% 14.83% 10.81%

Table 4. Probability of schedule slip by more than 25 percent in six subindustries.

Table 5. Numbers and size ranges of project
management tools (size data expressed in terms of
function point metrics).

Project Management Lagging Average Leading
Project planning 1,000 1,250 3,000
Project cost estimating 3,000
Statistical analysis 3,000
Methodology management 750 3,000
Year 2000 analysis 2,000
Quality estimation 2,000
Assessment support 500 2,000
Project measurement 1,750
Portfolio analysis 1,500
Risk analysis 1,500
Resource tracking 300 750 1,500
Value analysis 350 1,250
Cost variance reporting 500 1,000
Personnel support 500 500 750
Milestone tracking 250 750
Budget support 250 750
Function point analysis 250 750
Backfiring: LOC to FP 750

Function point subtotal 1,800 5,350 30,250
Number of tools 3 10 18

Project Management

CROSSTALK The Journal of Defense Software Engineering 17July 1998

firm engineering basis by the end of the
20th century.

Project managers are the primary key
to software project success and failures.
To a large degree, the sophistication or
lack of sophistication of the project
management tool suite will determine
whether software projects will succeed,
experience major cost and schedule
overruns, or fail. ◆

About the Author
Capers Jones is an
international consult-
ant on software man-
agement topics and
chairman of Software
Productivity Research,
Inc. (SPR) in Burling-

ton, Mass. He began his software career
as a programmer in the Office of the
Surgeon General, Washington, D.C.
Prior to becoming chairman of SPR, he
worked at the Crane Company, IBM, and
was assistant director of programming
technology at ITT Corporation’s Pro-
gramming Technology Center in Strat-
ford, Conn.

Software Productivity Research, Inc.
1 New England Executive Park
Burlington, MA 01803-5005
Voice: 781-273-0140
Fax: 781-273-5176
E-mail: capers@spr.com

Suggested Readings
1. Brown, Norm, ed., The Program

Manager’s Guide to Software Acquisition
Best Practices, Version 1.0, U.S. Depart-
ment of Defense, Washington, D.C.,
July 1995.

2. Charette, Robert N., Software Engineer-
ing Risk Analysis and Management,
McGraw-Hill, New York, 1989.

3. Charette, Robert N., Application Strate-
gies for Risk Analysis, McGraw-Hill, New
York, 1990.

4. DeMarco, Tom, Controlling Software
Projects, Yourdon Press, New York, 1982.

5. DeMarco, Tom, Why Does Software Cost
So Much?, Dorset House, New York,
1995.

6. Department of the Air Force, Guidelines
for Successful Acquisition and Management
of Software-Intensive Systems, Vols. 1 and

2, Software Technology Support Center,
Hill Air Force Base, Utah, 1994.

7. Dreger, Brian, Function Point Analysis,
Prentice-Hall, Englewood Cliffs, N.J.,
1989.

8. Grady, Robert B., Practical Software
Metrics for Project Management and
Process Improvement, Prentice-Hall,
Englewood Cliffs, N.J., 1992.

9. Grady, Robert B. and Deborah L.
Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall,
Englewood Cliffs, N.J., 1987.

10. IFPUG Counting Practices Manual,
Release 4, International Function Point
Users Group, Westerville, Ohio, April
1995.

11. Jones, Capers, Applied Software Measure-
ment, McGraw-Hill, New York, 2d ed.,
1996.

12. Jones, Capers, Critical Problems in Soft-
ware Measurement, Information Systems
Management Group, 1993.

13. Jones, Capers, Software Productivity and
Quality Today – The Worldwide Perspec-
tive, Information Systems Management
Group, 1993.

14. Jones, Capers, Assessment and Control of
Software Risks, Prentice-Hall, 1994.

15. Jones, Capers, New Directions in Software
Management, Information Systems
Management Group.

16. Jones, Capers, Patterns of Software System
Failure and Success, International
Thomson Computer Press, Boston,
Mass., December 1995.

17. Jones, Capers, Software Quality – Analysis
and Guidelines for Success, International
Thomson Computer Press, Boston,
Mass., 1997.

18. Jones, Capers, The Economics of Object-
Oriented Software, Software Productivity
Research, Burlington, Mass., April 1997.

19. Jones, Capers, The Year 2000 Software
Problem – Quantifying the Costs and
Assessing the Consequences, Addison-
Wesley, Reading, Mass., 1998.

20. Kan, Stephen H., Metrics and Models in
Software Quality Engineering, Addison-
Wesley, Reading, Mass.

21. Howard, Alan, ed., Software Metrics and
Project Management Tools, Applied Com-
puter Research, Phoenix, Ariz., 1997.

22. Mertes, Karen R., Calibration of the
CHECKPOINT Model to the Space and
Missile Systems Center Software Database,

thesis, AFIT/GCA/LAS/96S-11, Air
Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio, Septem-
ber 1996.

23. Multiple authors, Rethinking the Software
Process, (CD-ROM), Miller-Freeman,
Lawrence, Kan., 1996. (This is a new
CD-ROM book collection jointly pro-
duced by the book publisher, Prentice-
Hall and the journal publisher, Miller-
Freeman. This CD-ROM disk contains
the full text and illustrations of five
Prentice-Hall books: Assessment and
Control of Software Risks by Capers Jones,
Controlling Software Projects by Tom
DeMarco, Function Point Analysis by
Brian Dreger, Measures for Excellence by
Larry Putnam and Ware Myers, and
Object-Oriented Software Metrics by
Mark Lorenz and Jeff Kidd.)

24. Putnam, Lawrence H., Measures for
Excellence – Reliable Software On Time,
Within Budget, Yourdon Press - Prentice-
Hall, Englewood Cliffs, N.J., 1992.

25. Putnam, Lawrence H. and Ware Myers,
Industrial Strength Software – Effective
Management Using Measurement, IEEE
Press, Los Alamitos, Calif., 1997.

26. Rubin, Howard, Software Benchmark
Studies for 1997, Howard Rubin Associ-
ates, Pound Ridge, N.Y., 1997.

27. Stukes, Sherry, Jason Deshoretz, Henry
Apgar, and Ilona Macias, Air Force Cost
Analysis Agency Software Estimating Model
Analysis, TR-9545/008-2, Contract
F04701-95-D-0003, Task 008, Manage-
ment Consulting & Research, Inc.,
Thousand Oaks, Calif., Sept. 30, 1996.

28. Symons, Charles R., Software Sizing and
Estimating – Mk II FPA (Function Point
Analysis), John Wiley & Sons, Chiches-
ter, England, 1991.

29. Thayer, Richard H., ed., Software Engi-
neering and Project Management, IEEE
Press, Los Alamitos, Calif., 1988.

30. Umbaugh, Robert E., ed., Handbook of
IS Management, 4th ed., Auerbach
Publications, Boston, Mass., 1995.

31. Zells, Lois, Managing Software Projects –
Selecting and Using PC-Based Project
Management Systems, QED Information
Sciences, Wellesley, Mass.

Project Management Tools and Software Failures and Successes

18 CROSSTALK The Journal of Defense Software Engineering July 1998

Coming Events
Call for Papers: First International Software
Assurance Certification Conference (ISACC’99)

Theme: Early Lessons Learned and Prospects
Location: Washington, D.C.
Dates: March 1-3, 1999
Chairman: Chuck Howell, E-mail: howell@rstcorp.com
Program Chairman: Jeffrey Voas, E-mail:

jmvoas@rstcorp.com
Sponsor: Software Testing Assurance Corporation,

Stamford, Conn.
Conference Secretariat: Peggy Wallace
Voice: 703-404-9293
Fax: 703-404-9295
E-mail: pwallace@rstcorp.com
Internet: http://www.rstcorp.com/ISACC99

Software Cost and Schedule Estimation Course
Dates: July 13-15, l998
Location: University of California at Los Angeles
Topics: How to estimate software project cost and

schedule, including metrics, case studies, productivity
of developers, quality-ISO 9001 and SEI CMM,
managing the estimation process, rules of thumb, why
projects succeed or fail, advantages and disadvantages
of widely used models, Year 2000 challenge, emerging
issues, and reference sources.

Sponsor: UCLA Extension Short Course Program
Contact: Marcus Hennessy
Voice: 310-825-1047
Fax: 310-206-2815
E-mail: mhenness@unex.ucla.edu
Contact: Donald S. Remer
Voice: 909-621-8964
E-mail: remer@hmc.edu

12th Annual ASEET Symposium
Dates: July 27-30, 1998
Location: Monterey, Calif.
Presenters: Dawn Hartley (Defense Information Systems

Agency), Col. Kevin J. Cogan (U.S. Military Acad-
emy), Martin C. Carlisle (U.S. Air Force Academy),
Dean Hendrix (Auburn University), Ben Brosgol
(Aonix), Richard Riele (AdaWorks).

Contact: Lt. Col. Drew Hamilton
Voice: 914-938-5555 DSN 688-5555
Fax: 914-938-5956 DSN 688-5956
E-mail: dj7560@exmail.usma.edu
Contact: Maj. Jeanne Murtagh
Voice: 937-255-6565 DSN 785-6565
Fax: 937-656-4502 DSN 986-4502
E-mail: jmurtagh@afit.af.mil

Software Engineering Institute Software
Engineering Symposium

Dates: Sept. 14-17, 1998
Location: David Lawrence Convention Center, Pitts-

burgh, Pa.
Sponsor: Software Engineering Institute (SEI)
Contact: SEI Customer Relations
Voice: 412-268-5800
Fax: 412-268-5758
E-mail: customer-relations@sei.cmu.edu

Software Configuration Management Seminars
Dates: Sept. 14-15, 1998
Location: Milwaukee, Wis.
Subject: This course provides an introduction of the

disciplines of software configuration management
through exercises, demonstrations, and lectures.

Sponsor: Software Configuration Solutions, Inc.
Contact: Voice: 414-938-0442
Fax: 414-938-0443

The Practical Application of Software Configuration
Management

Dates: Sept. 16-17, 1998
Location: Milwaukee, Wis.
Subject: This course provides a breakdown of the compo-

nents of an effective software configuration manage-
ment environment.

Sponsor: Software Configuration Solutions, Inc.
Contact: Voice: 414-938-0442
Fax: 414-938-0443

Interim Profile Organizational Team Training
Dates: Oct. 20-21, 1998
Location: Pittsburgh, Pa.
Subject: Participants will get the skills to deliver Interim

Profile to their organization.
Sponsor: Process Focus Management
Contact: Voice: 916-682-0272
Fax: 916-682-9658

Call for Presentations: International Conference on
Practical Software Quality Techniques ’98 (PSQT)

Dates: Oct. 5-7, 1998
Location: St. Paul, Minn.
Subject: PSQT focuses only on practical techniques.

Presentations that reflect real experiences with practical
software quality techniques and tools are invited.

Featuring: Watts Humphrey, Boris Beizer, and Robert
Binder

Contact: http://www.tcqaa.org/psqt/index.html or http://
www.softdim.com/psqt

CROSSTALK The Journal of Defense Software Engineering 19July 1998

Over the last three decades, a proven but yet
underutilized project management technique has
emerged and taken its place alongside other valuable

tools: earned value. In its formal application, it has been
found to be an effective device to oversee and manage major
new systems acquisitions by U.S. government agencies. In a
more basic form, earned value can be a useful technique in
the management of any project—including, and in particu-
lar, software projects.

Earned value requires that the project be fully defined at
the outset and then a bottom-up plan be created. This allows
measurement to take place during the entire period of perfor-
mance, from 1 percent to 100 percent of the project’s lifecycle.
The power in this tool is that it provides accurate and reliable
readings of performance from as early as 15 percent into the
project. As shown in Figure 1, any project manager can use
these performance readings to predict how much it will cost to
complete the project within a narrow band of values. If these
early warning signals convey unacceptable readings to the
project manager, steps can be immediately taken to avoid the
undesired results.

This technique is of particular interest to software project
managers. No longer must software projects use up all their
resources before there is a harsh realization that much of the
work has not been completed, forcing features to be dropped
to stay within the added budget authorized by management.
Earned-value project management can be most helpful to any
software project manager who has made a firm commitment
to complete all the features within a definitive schedule and
for a finite amount of funds.

Introduction to the Earned-Value Concept
Earned value has been mandated by the U.S. government for
decades in an inflexible, formalized manner that has kept many
organizations from attempting to use the technique. This man-
dated, formalized version began in 1967 when the Department
of Defense (DoD) issued a directive that imposed 35 Cost/
Schedule Control Systems Criteria (C/SCSC) on all private
industrial firms that wished to participate in future major
government systems in which some type of cost-reimbursable

or incentive contract was to be used. Thereafter, any time a
new major system would be procured by the U.S. government
in which the “risk” of cost growth was retained by the govern-
ment, these 35 criteria had to be satisfied by the contractor.

The effect of the C/SCSC mandate was to require a for-
mal version of the “earned-value” concept of cost and sched-
ule management on selected major new projects. A certain
minimum contract dollar value (in millions) and a minimum
program duration (of 12 months or more) had to be present
before the criteria were to be applied. Essentially, these
earned-value criteria were intended only for major system
procurements.

The C/SCSC concept has been consistently applied for
over 30 years and has set the standard for major government
systems acquisitions. Other government agencies in the
United States and in other nations such as Australia, Canada,
and Sweden have adopted similar earned-value criteria in the
management of their major system acquisitions. A practical
body of scientific management knowledge has been devel-
oped on the use of the earned-value concept, primarily com-
piled by the DoD and by the Air Force Institute of Technol-
ogy (AFIT).

Although some people consider these 35 C/SCSC stan-
dards a Utopian ideal for all private firms to emulate, many
within private industry have had difficulty employing these

Earned Value Project Management
A Powerful Tool for Software Projects

Quentin W. Fleming and Joel M. Koppelman
Primavera Systems, Inc.

Earned value can provide any project manager with an early warning tool that sends out a signal from
as early as the 15 percent completion point on a project. This signal allows the project manager to
forecast the final required funds needed to finish the job within a narrow range of values. If the final
forecasted results are unacceptable to management, steps can be taken early to alter the final require-
ments. The end benefit is that software projects can be completed that contain more final features—if
the project’s management monitors the true cost performance from the beginning of the project.

Figure 1. Cost risks can be managed with an “early warning” signal.

20 CROSSTALK The Journal of Defense Software Engineering July 1998

rigid criteria on all their projects—par-
ticularly commercial projects. Their
perception is that there are too many
nonvalue-added requirements in the
formalized C/SCSC for them to be
universally employed on all their com-
mercial projects.

Industry’s acquired distaste for the
C/SCSC implementation of earned
value is unfortunate because earned
value performance measurement pro-
vides a sound project management tool.
When properly employed, it can give
the project manager an early warning
signal that the project is heading for a
cost overrun unless immediate steps are
taken to change the spending plan. The
software world needs something less
formal than the full C/SCSC, some-
thing that can be scaled downward and
precisely tailored to fit broader project
management applications. Today, it is
likely that more than 99 percent of the
projects in the world do not employ the
earned-value cost management concept.
Instead, to monitor costs status, they
merely compare their spend plan to
their actual costs, and that is unfortu-
nate. There are opportunities to use a
simplified form of earned value on any
project of any size within the military
or commercial sectors.

The Genesis and Evolution of
Earned Value
To properly understand the earned-
value concept, we must go back in time
to the early part of this century and
trace the origin of earned value as it
came initially from the factory floor.

The Factory Floor in the Early
1900s
The earned-value concept originally
came from industrial engineers in facto-
ries who for years have employed a
three-dimensional approach to assess
true “cost-performance” efficiencies. To
assess their cost performance, they have
been comparing their earned standards
(the physical factory output) against the
actual costs incurred. Then they compare
their earned standards to the original
planned standards (the physical work
they planned to accomplish) to assess the

C/SCSC 1967 to 1996
Since the issuance of the C/SCSC by the
DoD, the concept’s application has been
limited only to contracts in which the
government has retained the risks of cost
growth, i.e., on cost- or incentive-type
contracts and subcontracts. Perhaps the
most significant aspect of C/SCSC em-
ployment has been the body of scientific
knowledge that has been accumulated in
its use on major highly technical
projects. The DoD has been accumulat-
ing data on the use of earned value to
assess project performance and has been
using the results attained to predict final
cost and schedule results with amazing
accuracy.

Earned Value Management
Systems Criteria 1996 to Present
After years of earned value being im-
posed on industry by the government as
a unilateral mandate, private industry
asked for and was allowed to have a say
in the wording of the requirements
being imposed on them. In 1995, pri-
vate industry, as represented by the
National Security Industrial Association
(NSIA), was allowed to assess the utility
of the earned-value criteria.

After a year-long study, the NSIA
subcommittee came up with its version
of the criteria, reworded significantly to
be more palatable to the project manage-
ment community. The industry standard
was called the Earned Value Manage-
ment System (EVMS) and the number
of criteria was reduced from 35 to 32.
This major development was endorsed
by the DoD in December 1996.

However encouraging these recent
advancements may be, going from 35 to
32 criteria still leaves the earned-value
concept with far too many nonvalue-
added requirements. We believe the
earned-value concept will never be uni-
versally accepted by project managers in
its current form, embedded as a part of
the 32 formal EVMS criteria. There are
too many rules and terms one must
master to employ this approach. Instead,
what is needed is a return to the simple
concept that originally came from the
industrial factory floors. The industrial
engineers did not use checklists and
interpretations to employ their concept;

Project Management

schedule results. These efforts provided
earned value in its most basic form.

Most important, the industrial engi-
neers defined a cost variance as the differ-
ence between the actual costs spent and
the earned standards in the factory. This
definition of a cost variance is perhaps
the litmus test to determine whether one
uses the earned-value concept.

PERT/Cost 1962-1965
The Program Evaluation and Review
Technique (PERT) was introduced by
the U.S. Navy in 1957 to support the
development of its Polaris missile pro-
gram. PERT attempted to simulate the
necessary work to develop the Polaris
missile by creating a logic network of
dependent sequential events. The initial
focus of PERT was on the management
of time and on predicting the probabil-
ity of program success. But before
PERT was accepted by program man-
agement in industry, the U.S. Air Force
came up with an extension of PERT by
adding resource estimates to the logic
networks. PERT/Cost was thus born in
1962, and the initial PERT was thereaf-
ter known as PERT/Time.

The significance of PERT/Cost,
however, was not the technique, but
what evolved from it. The earned-value
measurement concept was first intro-
duced to the American defense con-
tracting community when the govern-
ment issued the DoD and NASA Guide
to PERT/Cost in 1963, which provided
a simple definition of earned value.
Instead of relating cost plans to cost
actuals, which had been the custom,
PERT/Cost related the value of physical
work performed against the cost actuals
to determine the utility and benefits
from the funds spent. What was physi-
cally accomplished for what was spent
was a simple but fundamentally impor-
tant new concept in program manage-
ment.

For various reasons, the DoD gave
up on the PERT/Cost technique in the
mid-1960s but correctly held on to the
earned-value concept. When the DoD
formally issued the C/SCSC in 1967,
the earned-value concept was solidly
contained therein.

CROSSTALK The Journal of Defense Software Engineering 21July 1998

rather, they used common sense to de-
termine what was needed and what did
or did not work.

Listed below are 10 earned-value
“musts” that, when followed, capture
the critical essence of the earned-value
concept and enhance the management
of all projects, large and small, from
any industry.

Ten Musts to Implement
Earned Value on All Projects

Define Work Scope
You must define 100 percent of the
project’s work scope using a work
breakdown structure (WBS). Perhaps
the most critical and most challenging
requisite to employing earned value is to
define the project’s total work scope.
This is a difficult task for any project,
and particularly so for software projects.
Yet, if you do not define what consti-
tutes 100 percent of the assumed work,
how can you measure the project’s per-
formance in a definitive way? Without a
100 percent reference point, how can
anyone ascertain whether you have com-
pleted 10 percent, 20 percent, or 25
percent of a job?

Realistically, no one can define a
new job with absolute precision, but
you must make some intelligent as-
sumptions about a new project to quan-
tify the work with sufficient confidence
that the defined effort can be planned,
scheduled, and estimated with some
degree of certainty. Anything less, and
management must commit to a job by
authorizing a “blank check” for the
project.

How does one define a job when
specific details are often lacking? There
are no absolute answers, but one of the
most useful of all tools available to any
project manager is the WBS. The WBS
is to the project manager what the orga-
nization chart is to the executive—it
allows the project manager to define a
new endeavor by laying out all the as-
sumed work, then decomposing each
task into measurable work packages.
Once the WBS is assumed to constitute
a reasonable portrayal of the new
project, it can be used to take the next
steps in the project planning process,

including the make-or-buy analysis, risk
assessment, planning, scheduling, esti-
mating, and authorization to proceed.

Create an Integrated Bottom-Up
Plan
You must combine critical processes,
including defined work scope, schedule,
and estimated resources, into an inte-
grated bottom-up plan of detailed mea-
surement cells called Control Account
Plans (CAPs). Earned value project
management is implemented within
detailed CAPs, which therefore consti-
tute formal bottom-up project planning.
The individual CAPs represent the inte-
gration of all critical processes such as
work scope, planning, scheduling, esti-
mating, and authorization.

The performance measurement will
take place within the detailed CAPs,
and the total project’s performance is
the summation of what was reflected in
the detailed CAPs. In essence, each
project CAP is a subproject of the total
project that is managed, measured, and
controlled by a CAP manager.

Formally Schedule CAPs
Each of the defined CAPs must be
planned and scheduled with a formal
scheduling system. This is perhaps the
single most critical tool required to
implement earned value. The project’s
scheduling system will portray the ap-
proved work scope, which is carefully
placed into a specific timeframe for
performance. In earned-value vernacu-
lar, this scheduled work will constitute
the project’s planned value. As perfor-
mance takes place on the project, the
portion of the planned value that is
physically accomplished becomes the
earned value. Both the planned value
and the resulting earned value must use
the same metrics to measure their per-
formance.

The project’s scheduling system is,
therefore, critical to the employment of
earned value because it is the vehicle to
represent the project’s scope, planned
value, and earned-value measurement.
The project master schedule is vital to the
project because it constitutes the project
manager’s specified planned value for
everyone to follow.

Assign Each CAP to an Executive
for Performance
Each of the defined CAPs must be
assigned to a permanent functional
executive for performance. This as-
signment effectively commits the ex-
ecutive to oversee the performance of
each CAP. Projects are by their nature
transient within any firm’s permanent
organizational structure—they are au-
thorized, implemented, and performed,
then eventually go out of existence.
Many (perhaps most) of those who
manage the detailed performance that
takes place within the CAPs will not
carry the formal title of “manager”
within the firm’s permanent organiza-
tional structure; rather, many or most
of these CAP managers are functional
employees temporarily assigned and
matrixed into the project by one of the
permanent functional organizations. To
secure a firm commitment from the
functional executives who have the
authority and resources to make the
plan happen, it is wise to have each of
the defined project CAPs essentially
adopted by a senior function person
with a title such as vice president, direc-
tor, or manager.

Establish a Baseline that
Summarizes CAPs
A total project performance measure-
ment baseline must be established,
which represents the summation of the
detailed CAPs. The next required step
is to form a total baseline against which
project performance may be measured.
Such baselines must include all defined
CAPs plus any management (contin-
gency) reserves that may be held by the
project manager. If management re-
serves are not given to the project man-
ager but are instead controlled by a
senior management committee, they
should be excluded from the project
performance baseline.

On a commercial-type contract, the
baseline may include such things as
indirect costs—and even profit or fee—
to match the total authorized project
funds. Internal projects will typically not
contain indirect costs, profits, or man-
agement reserves. Most internal project

Earned Value Project Management: A Powerful Tool for Software Projects

22 CROSSTALK The Journal of Defense Software Engineering July 1998

baselines will be the sum of the defined
CAPs.

Measure Performance Against
Schedule
Periodically, you must measure the
project’s schedule performance against
its planned master project schedule.
The formally issued and controlled
project master schedule constitutes the
project’s planned scope. Each task de-
scribed on the project master schedule
can be loaded with estimated resources,
such as hours or dollars, which are em-
bedded within the authorized CAPs. As
performance takes place within the
CAPs, you can quantify the relationship
between the value of the work scheduled
as compared to the value of the work
accomplished. The difference between
the work scheduled and work accom-
plished constitutes the schedule variance
in earned value.

A negative schedule variance means
that the value of the work accomplished
does not match the value of the work
scheduled, i.e., the project is falling
behind in its scheduled work. Each
behind-schedule task can be assessed
regarding its criticality to the project. If
the late task is on the critical path, or if
the task carries a high risk to the project,
efforts can be made to get the late task
back on schedule. Conversely, if a task
has positive variance or is not considered
a high risk to the project, added re-
sources should not be spent to accelerate
its performance.

Measure Cost Efficiency Against
the Costs Incurred
You must periodically measure the
project’s cost performance efficiency
rate, which represents the relationship
between the project’s earned value per-
formed and the costs incurred to
achieve the earned value. The single
most important benefit of employing
earned value is the cost efficiency read-
ings it provides. The difference between
the value of work performed and the
costs incurred to accomplish the work
provides the cost-efficiency factor. If you
are spending more on the project than it
receives in value, this reflects an overrun
condition. Absolute overruns have been

found to be nonrecoverable. Overruns
expressed as a percentage value have
been found to deteriorate unless the
project takes aggressive actions to miti-
gate the condition.

Perhaps of greatest benefit, the cost
efficiency rate has been found to be
usably stable from the 15 percent point
of a project completion and progressively
more stable as it goes from the 20 per-
cent to 30 percent to 40 percent comple-
tion point. Therefore, the cost efficiency
factor is an important metric for any
project manager or enterprise executive
to monitor.

Forecast Final Costs Based on
Performance
Periodically, you must forecast the
project’s final cost requirements based
on its performance against the plan.
One of the more beneficial aspects of the
earned-value concept is its ability to
independently forecast the total required
funds at the end of a project, commonly
called the “estimate at completion.”
Based on project performance against
the plan, a project manager can accu-
rately estimate the total funds required
to finish the job within a finite range of
values.

These statistical estimates are some-
thing like a grass-roots sanity check
against estimates based more on wishful
thinking because they provide a more
realistic estimate of the values needed to
finish the job—unless someone has a
preconceived notion of what that value
should be. As reflected in Figure 1, if the
earned-value statistical estimates are
greater than the “official” project esti-
mates to complete the project, someone
in a senior management position should
reconcile these professional differences of
opinion.

Manage Remaining Work
You must continuously manage the
project’s remaining work. The results
achieved to date on a project, good or
bad, are in effect “sunk costs”—gone
forever. Thus, any improvements in
performance must come from future
work—tasks ahead of the latest status
date. Earned value allows the project
manager to accurately measure the cost

and schedule performance achieved to
date. If the results thus far are less than
desired, the project manager can exert a
more aggressive posture on all future
work. Earned value, because it allows the
project to accurately quantify the value
of its work achieved, allows the project
manager to also quantify the value of the
work ahead to stay within the objectives
set by management.

Manage Baseline Changes
You must continuously maintain the
project’s baseline by managing all
changes to the baseline. The project
performance measurement baseline you
put in place at the start of the project is
only as good as your management of all
proposed changes to the baseline during
the duration of the project. Any perfor-
mance baseline quickly becomes invalid
if you fail to incorporate changes into
the approved baseline either by the addi-
tion to or elimination of added work
scope.

All new changes of project work
must be addressed either by the approval
or rejection of changes. For the initial
baseline to remain valid, every change
must be closely managed. Maintaining a
baseline is as challenging as the initial
definition of the project scope at the
start of the project.

Conclusion
The earned value project management
concept as a part of the more formal C/
SCSC or EVMS has been demonstrated
to be an effective technique in the man-
agement of major projects. Unfortu-
nately, most of the experience with the
concept has been restricted to those
applications where the U.S. government
has imposed the technique on major
new systems acquisitions for which it
retains the risk of cost growth.

However, the best opportunities for
earned-value employment may well lie
in the management of thousands of
smaller projects that are being directed
by people who may well be unaware of
earned value. We believe the concept
should be considered any time the risk
of cost growth resides with a project
manager, any time a lump sum or fixed
price contract is used, and on all in-

Project Management

CROSSTALK The Journal of Defense Software Engineering 23July 1998

house funded developmental projects
where a firm commitment is made to
management. It should be considered
any time a project manager could benefit
from receiving an early warning cost
signal in time to alter the ultimate direc-
tion of a project. Software projects can
especially benefit from the employment
of a simple earned-value approach. ◆

About the Authors
Quentin W. Fleming,
senior staff consultant
to Primavera Systems,
Inc., has over 30 years
industrial project man-
agement experience.
He held various man-

agement assignments with the Northrop
Corporation from 1968 until 1991,
served on an earned-value corporate

review team, and wrote the corporate
policy directive on scheduling.

He is president of the Orange County
Project Management Institute (PMI)
chapter and developed and taught four
PMI Project Management Professional
tutorial courses covering scope, cost, time,
and procurement management. He has a
bachelor’s and a master’s degree in man-
agement and is the author of seven pub-
lished textbooks including Earned Value
Project Management, which he co-wrote
with Joel M. Koppelman.

E-mail: QuentinF@Primavera.com

Joel M. Koppelman is
president of Primavera
Systems, which pro-
vides a family of
project management
software products.
Before co-founding

Primavera in 1983, he spent over 12 years
planning, designing, and managing major
capital projects in the transportation
industry, including duties as vice presi-
dent and chief financial officer for Trans-
portation and Distribution Associates,
Inc. Before that, he was affiliated with the
management consulting firm of Booz
Allen Hamilton, Inc.

Koppelman is a registered professional
engineer with a bachelor’s degree in civil
engineering from Drexel University and a
master’s of business administration degree
from the Wharton School of the Univer-
sity of Pennsylvania. He is a frequent
speaker at universities and for interna-
tional management organizations.

E-mail: JKoppel@Primavera.com

Earned Value Project Management: A Powerful Tool for Software Projects

Join the Software Technology Support Center’s (STSC)
Personal Software Process (PSP) team in Park City, Utah
for two eight-day sessions Sep. 21-
30 and Oct. 19-28 of the Disci-
plined Software Engineering
course. The course is available to
government organizations, and
government room rates will be
available.

The course trains engineers in
the application of the PSP and
consists of an integrated mix of
lectures that stress software engi-
neering topics, tutorials that ex-
plain the PSP, programming assignments in which the PSP
is used and development data collected, and report assign-
ments in which PSP data is analyzed and used for personal
process improvement. The course will be taught by Les

Rocky Mountain Higher Education
Personal Software Process

Dupaix and Jim Van Buren, both certified by the Software
Engineering Institute as PSP instructors.

The cost will be $3,500 per stu-
dent for both sessions. Group dis-
counts are available. Students are re-
sponsible for travel costs. Funding
is via a valid intergovernment orga-
nization reimbursable funding
document, such as an Air Force
Project Order Form 185 or a Mili-
tary Interdepartmental Purchase
Request (DD Form 448). Funding
questions should be directed to the
STSC funding point of contact,

Dan Arnow, at 801-775-2052 or DSN 775-2052.
Contact the STSC for information on course pre-

requisites, payment, schedule, and cancellation policy.

Les Dupaix 801-775-5555 ext. 3088 DSN 775-5555 ext. 3088
Jim Van Buren DSN 801-775-3017 DSN 775-3017

24 CROSSTALK The Journal of Defense Software Engineering July 1998

Recently, I was invited to a
meeting in Washington D.C. to
review a proposed quality stan-

dard for the year 2000. Although the
meeting was focused on testing, the
discussion reinforced the multifaceted
nature of the Y2K problem. Since few
people have seen a problem like this, we
need to characterize it in a way that
clearly identifies the actions that must be
taken, and a checklist could be what is
needed. It would describe the actions
required and enable managers to quickly
see the work they need to get under way.

After drafting the Y2K readiness
checklist, I had several knowledgeable
people review it. Although no brief
checklist can be complete, this one cov-
ers the points the reviewers and I felt
were most important. Organizations
may identify additional important areas,
but they should not substantially expand
the checklist because that would make it
harder to use and less effective.

This checklist is designed to help you
judge the readiness of your organization
for the Y2K transition. In using this
checklist, you should consider several
points.
• The Y2K transition problem will be

much like those you have experi-
enced in installing and converting to
a new system or application program
version, only this time, you will be
installing and converting to an up-
dated version of every application
and system simultaneously.

• If you experience Y2K problems with
any commercially supplied software

package, other users will likely have
similar problems at the same time.
Thus, the vendors’ help desks and
support services will probably be
swamped with calls and unavailable
for extended periods.

• Unless you have contracted for
dedicated support services, you
must be prepared to be self-suffi-
cient. If you have a support con-
tract, you need to ensure the suppli-
ers of such services have resources
dedicated to your needs.

• The Y2K cutover will most likely
result in multiple application and
system crashes and other disasters. It
is therefore essential that you main-
tain complete backups of all applica-
tion and system data and programs.
Note, however, that with the Y2K
problem, traditional backup practices
will not work. Usually, when backing
up, one returns the system to a prior
configuration that worked. In this
case, at least until after the cutover
period, there will be no prior con-
figuration that is known to work.

• Be careful about vendor selection
because there will likely be unscrupu-
lous providers of Y2K services. When
organizations do not have a compe-
tent technical staff, dishonest opera-
tors could pretend to do the required
work, then disappear before Jan. 1,
2000. Any organization that wants
substantial payments upfront should
be avoided like the plague. Although
scams are nothing new, Y2K is an
extremely attractive opportunity; any
organization that is victimized could
well be out of business before it can
recover damages.

• View all Y2K tools, services, guide-
lines, and checklists (including this
one) with a high degree of skepti-
cism. Remember, none of them have
been tested in practice and shown to
work. You therefore must examine all
such offerings and satisfy yourself
that they are credible and reliable.

• Consider each specific item in this
checklist and satisfy yourself that it is
necessary for your organization.
With the exception of the crisis re-
sponse, zero-hour testing, and emer-
gency backup, all other items except
one may or may not be essential,
depending on your situation. Al-
though you may not need these
essential items, if you do (and most
organizations will) you cannot build
them on short notice.

• The one capability exception that
every organization should put in
place as soon as possible is a configu-
ration management system. If you do
not have this capability, you will
most likely have problems that could
be severe and unrecoverable. This
must not be viewed as something to
do later when you have a chance. Put
a configuration management system
in place now.

The Y2K Readiness Checklists
The following checklists are designed to
help you quickly assess the readiness of
your organization for the Y2K transi-
tion. Complete the organization check-
list first (Figure 1), then fill out the ap-
plication checklist for every active
application (Figure 2).

Year 2000 Readiness Checklists
Watts S. Humphrey

Software Engineering Institute, Carnegie Mellon University

The checklists in this article are designed to help organizations determine their readiness for the year 2000
(Y2K) date change. The lists are brief but include the items many experienced professionals have concluded are
necessary for adequate Y2K preparation. They will help managers quickly assess their status and determine
where they are exposed. This article also includes explanations of the various items and some general comments.

This article is based on “What Does Y2K Mean to
You,” Object Magazine Online, April 1998
(http://www.sigs.com/omo).

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25July 1998

Figure 1. The Y2K organization readiness checklist.

* Organization Units (laboratory, plant, etc.): Done Under Way Plan No Plan
Should be done by Jan. 1, 1998.

1 Adequate 1998 budget and staff in place.
2 Configuration management system in place.
3 Applications inventoried.
4 Applications assessed (with checklist).
5 Application source code under control.
6 Application priorities determined.
7 Y2K tools available.
8 Date change standards defined and tested.
9 Database correction inventoried.

10 Service and support facilities surveyed for Y2K.
11 Critical applications staffed and in development.

Should be done by Jan. 1, 1999.
12 Adequate 1999 budget and staff in place.
13 Applications updated and in test�critical.
14 All applications staffed and in development.
15 Database corrections staffed and in development.
16 Service and support corrections under way.
17 Hot-line group funded and staffing identified.

Should be done by July 1, 1999.
18 Backup procedures defined.
19 Applications updated and in test�key.
20 Emergency procedures defined and tested.
21 Customer and supplier testing under way.
22 Zero-hour procedures defined.
23 Hot-line groups staffed and supporting testing.
24 Database corrections in test.

Should be done by Sept. 1, 1999.
25 Emergency procedures training in place.
26 Applications updated and in test�all.
27 Zero-hour procedures tested.
28 Backup procedures tested.
29 Service and support tests completed.

Should be done by Dec. 1, 1999.
30 All application and database testing complete.
31 Adequate Y2K budget and staff in place.
32 Customer and supplier testing completed.
33 Emergency procedures training complete.
34 Backup procedures in full operation.
35 Zero-hour testing staffed for Jan. 1, 2000.
36 Hot lines fully staffed and rehearsing procedures.

Should be done by Jan. 1, 2000.
37 Emergency procedures rehearsals completed.
38 Zero-hour testing under way for Jan. 1, 2000.
39 Zero-hour testing staffed for Feb. 19, 2000.

Completing the Checklist
Have the most knowledgeable engineers
and managers complete the checklists.
Brief descriptions of the checklist terms
follow the checklists. In completing the
checklist, the columns to the right refer
to the status of the application or the

overall organization. If all the required
work has been done, check the “done”
column. Similarly, if the work is not yet
done but the project is staffed and under
way, check the “under way” column.
Later, when the application checklists are
completed, you can enter percentage
values for the percent of applications

that have been completed for each
checklist category.

The Y2K Application Checklist
Complete the application checklist for
every active application in the organi-
zation.

Checklist Definitions – Checklist
Columns
The four columns to the right of the
checklist are for status information. In
most cases, this work is either done or
not done. Generally, it is desirable to
either check the item or enter a date
when it will be done. After an initial
assessment, and after the work is under
way, it is helpful to enter a percentage
figure, as with “Applications assessed
(with checklist).” Here you would enter
the percentage of the applications as-
sessed. Note, however, that the columns
should add to 100 percent when using
percentage values for a checklist row.

It also is important to only count
completed work. For example, if you
have 10 items and three of them are
finished, that would be 30 percent com-
plete. When six of 10 items are each half
done, however, you would have zero
percent done. Do not take credit for
partially completed work because partial
status is generally hard to estimate and
can be misleading.

The status levels are defined as fol-
lows:

Done – This column is checked when
the listed work has been completed.

Under Way – This column is for work
that is staffed and under way. In those
cases where the work is only 50 percent
staffed, for example, it would be more
informative to enter a 50 percent in this
column. Note that this column does not
give any indication of whether the work
is likely to be completed on schedule.

Plan – This column is for those cases
where the work is planned but it is not
yet staffed or the staff may have been
identified but the work has not yet
started.

No Plan – This column is for those areas
where the work has not yet been planned

Year 2000 Readiness Checklists

26 CROSSTALK The Journal of Defense Software Engineering July 1998

Application Name:
Application Priority:
Application Support Needs Yes No
Emergency procedures required.
Hot-line capability required.
Zero-hour testing required.

* Done Under Way Plan No Plan
Should be done by Jan. 1, 1998.

50 Application priority determined.
51 Source code available.
52 Source code checked against object code in use.
53 Critical applications: staffed and in development.
54 Applications under configuration management.
55 Database correction inventoried.

Should be done by Jan. 1, 1999.
56 Applications updated and in test�critical.
57 All active applications: staffed and in development.
58 Database corrections staffed and under way.
59 Hot-line groups funded and staffing identified.

Should be done by July 1, 1999.
60 Emergency procedures defined and tested.
61 Applications updated and in test�key.
62 Critical applications tested with updated database.
63 Hot line partially staffed and supporting testing.

Should be done by Sept. 1, 1999.
64 Emergency procedures training in place.
65 All applications updated and in test.

Should be done by Dec. 1, 1999.
66 All application testing complete.
67 Emergency procedures training complete.
68 Hot-line fully staffed and rehearsing procedures.

Should be done by Jan. 1, 2000.
69 Emergency procedures rehearsals completed.
70 Zero-hour testing under way.

Figure 2. The Y2K application checklist.

or it has been planned but no staff has
yet been identified to do the work.

* – Where any tasks are late or need
special attention, mark them with an
asterisk in the “*” column.

Application Priorities
The definition of critical applications is
a matter of judgment and must usually
be settled by senior management. It is
therefore suggested that a comprehensive
listing of all applications be reviewed
with management together with a list of
those applications that are deemed criti-
cal and why. This is the action called for
under “Application priorities deter-
mined.” These priorities should specify
which programs are critical, key, active,
and inactive and also which will need
emergency backup procedures, hot-line
support, or zero-hour testing.

The application priorities are as
follows:

Critical – These are the applications on
which the organization’s business de-
pends. They can be found by identifying
the work that would have to be done
manually if all computers were shut
down for weeks or months. Without the
critical applications, the business could
not function.

Key – The key applications are those the
business needs but are not a matter of
organizational survival. Although they
are needed, their unavailability for pe-
riods of weeks and even a few months
would not be fatal; that is, either the
application work can be deferred or
manual back-up procedures will be de-
vised to handle the needs in the interim.

Active – The active applications are
those actively in use other than critical
or key applications. These applications
may only be run once a year or occasion-
ally on demand. Although they are
needed, their repair can be deferred until
shortly before the application is needed.
Note, however, that some applications
may only be used once a year for tax
purposes. If that one-time use is in Janu-
ary, however, this could become a critical
application.

Inactive – These are all the applications
that are no longer in active use. In most

cases, these would not warrant a Y2K
repair effort.

Readiness Dates
The dates given in the checklist are se-
lected based on overall judgment of the
amount of work to be done in a small-
to medium-sized organization that has a
competent software staff on hand. These
are the latest advisable dates; organiza-
tions should strive to get this work done
earlier if possible. Also, if the organiza-
tion is extremely large or if it does not
have a reasonably large and competent
staff, these dates should be even earlier.

For large organizations, earlier dates
are needed because of the huge volume
of work. Smaller organizations without a

substantial information systems staff will
need to hire one or more suppliers of
Y2K services. It takes time to identify
and obtain these services, so these orga-
nizations should work to meet the earli-
est possible dates.

Alphabetical Glossary
Following is an alphabetical listing of
definitions of many of the items on the
readiness checklists. The topic headings
are the same as in the checklists, and the
numbers refer to the numbers in the
asterisk column.

(1, 12, 31) Adequate (year) budget and
staff in place – This should be
management’s top priority. Unless the

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27July 1998

work is staffed in time, there is no way
to finish in time. The adequacy of the
funding and staffing should be based on
an assessment of a plan to do the work
and an estimate of the resources re-
quired.

(4) Applications assessed (with check-
list) – This refers to applications being
assessed with the application checklist.

(3) Applications inventoried – Every
application in use must be identified.
This requires naming the application
and where and when it runs. The inven-
tory also should list available source
code, manuals, procedures, and guide-
lines about the application, who uses it,
and when. This information is needed to
set priorities.

(6, 50) Application priority determined
– Management must decide which appli-
cations to fix, which to replace, and
which to handle with a hot-line capabil-
ity. This sets the priorities for every ap-
plication and guides the allocation of
development work. If these decisions are
not made early in the Y2K program,
important programs will likely be over-
looked while less critical applications are
being fixed. Management must set pri-
orities at the earliest possible point:
which applications are critical, key, ac-
tive, and inactive.

(5) Application source code under con-
trol – see “Configuration management”
and “Source code available.”

(54) Applications under configuration
management – see “Configuration man-
agement.”

(13, 19, 26, 56, 61, 65) Applications
updated and in test – once corrected,
the applications must be tested with the
corrected databases. It is important that
this testing cover the applications’ func-
tions as well as all the code and database
changes.

(18, 28, 34) Backup procedures – The
Y2K cutover will most likely result in
multiple application and system crashes
and other disasters. It is essential that

complete backups be maintained of all
application and system data and pro-
grams and that these backups be up-
dated frequently. All old backups must
also be retained since files can be un-
knowingly corrupted and not discovered
until much later. Good practice dictates
that backups be taken as early as pos-
sible, even before Y2K work starts. Note,
however, that with Y2K, traditional
backup practices will not work. Usually,
when backing up, one returns the system
to a prior configuration that worked.
With Y2K, at least until after the cutover
period, there will be no prior configura-
tion that is known to work.

(2, 54) Configuration management –
The configuration management system
maintains physical and electronic control
of the organization’s programs and data.
Applications that have been in use for
many years often have not been changed
for much of that time. Unless the organi-
zation has an established configuration
management system, the source code
could have been lost. The configuration
management system is also needed to
ensure that the changed programs are
properly updated in test and that only
tested programs are put into use. With-
out an effective configuration manage-
ment system, organizations are likely to
lose programs, misapply fixes, or use the
wrong tests and test data. All this wastes
time, which is the one thing you cannot
recover.

(21, 32) Customer and supplier testing
under way – Many businesses have
critical dependencies on their customers
or suppliers. Where these relationships
involve data processing interactions,
there will likely be Y2K problems. The
fixes to these problems must be tested in
advance.

(9, 15, 24, 55, 58) Database corrections
– Depending on the Y2K change strat-
egy, many database changes may have to
be made. Also, during the transition,
there are many ways that databases can
be corrupted. Until programs have been
corrected, for example, many date calcu-
lations will put incorrect dates in the
database. After the programs are cor-

rected, subsequent dates will be correctly
calculated. The application, however,
will not go back and search for the in-
correct entries in the old data. This must
be done by hand or with special tools, if
any can be found. This issue is further
complicated by the phased cutover of
multiple applications. The corrected
databases must then be tested with the
corrected applications.

(8) Date change standards defined and
tested – The Y2K date conversion for-
mulas are not complex, but they are not
trivial. It is essential that the engineering
change teams know precisely how to
handle date calculations.

(20, 25, 33, 37, 60, 64, 67, 69) Emer-
gency procedures defined – With large
systems and large volumes of changes,
there will be many defects. Thus, even
the most critical applications will likely
be unavailable for periods. The organiza-
tion must be prepared for this eventual-
ity and have a capability in place to
handle any problems. The emergency
procedures define how an application is
handled under these conditions. Manual
procedures should be in place and tested
for all critical and selected key applica-
tions. Because large numbers of people
will need to know how to quickly re-
spond in an emergency, training pro-
grams and procedure rehearsals will
generally be needed.

(17, 23, 36, 59, 63, 68) Hot lines – The
hot-line support group handles the crisis
calls when applications fail during and
after the Y2K cutover. Since application
failures can occur early for applications
with advanced dates (like credit card
expirations), the hot-line groups may
have to be staffed much earlier, depend-
ing on application needs. It also is im-
portant to staff these groups early to give
them experience with the applications
they will handle. The best way to do this
is to have them in place handling Y2K
testing problems and fixes.

A hot-line support capability will be
needed even for those applications that
have been completely repaired and
tested, because between 1 percent to 20
percent or more of all the Y2K fixes will

Year 2000 Readiness Checklists

28 CROSSTALK The Journal of Defense Software Engineering July 1998

likely have problems, even after testing.
With a fix quality program in place, the
1 percent number is achievable. If not,
20 percent or more is likely, depending
on staff experience, program complexity,
and the degree of testing.

Generally, you will need applica-
tion-knowledgeable people to staff the
hot lines. They provide telephone assis-
tance to system and application users,
internal or external. Their job is to help
the application users when they run
into problems.

(10, 16, 29) Service and support –
Many facilities such as elevators, security
systems, power distribution, telephone
systems, and air conditioning could have
date dependencies. Although these items
may not have problems, they could.
Each one should be tested or checked
with the manufacturer for Y2K compli-
ance and warranty coverage.

(51) Source code available – If the
source code for any active program is not
available and the program has date de-
pendencies, the application must be
replaced and tested. Replacement may
be expensive and take time, but without
the original author, programs can rarely
be fixed without the source code.

(52) Source code checked against object
code in use – In older systems, applica-
tions were occasionally patched to avoid
the time required to recompile and re-
build. When this has been done, the
source code will not represent the pro-
gram that is being used. When the devel-
opers update the source code for the
Y2K fixes, compiling and installing it
will erase all these prior object correc-
tions. The result will be the simulta-
neous re-emergence of all the problems
the original object patches were designed
to fix. These problems will not wait until
the year 2000; they will happen starting
now. To resolve such problems, these
patches must be identified and added to

the Y2K workload. These patches can be
found by compiling a new object pro-
gram from the source and making a bit-
for-bit comparison with a copy of the
object program in use.

(7) Y2K tools available – This box
should only be checked after the tools
have been evaluated, obtained, and
tested in practice. Until they are, it is
likely that many of the tools will be
found less effective or harder to use than
promised.

(22, 27, 35, 38, 70) Zero hour – The
zero hour is midnight Friday, Dec. 31,
1999. Over the long weekend of Jan. 1,
2000, the large and complex Y2K system
change must be tested live for the first
time. The zero-hour procedures define
how the time between Thursday, Dec.
30, 1999 and Tuesday, Jan. 4, 2000 is to
be used. During this period, many
groups should make test application
runs both in-house, with suppliers, and
with customers. This weekend is also
when the hot-line support groups must
move up to full capacity. The zero-hour
procedures are used to phase repaired
applications into service and recover
from any problems found. Although this
cutover should be started as early as
possible, special recovery resources and
procedures must be available and tested
during zero-hour testing. Plan to main-
tain the zero-hour testing capability until
all the critical applications are cut over
and work properly. This will likely take
at least a month and could take much
longer. Some organizations plan to
maintain this special testing and support
capability for at least three months.

(39) Zero-hour testing under way for
Feb. 29, 2000 – Normally, there is a leap
year every four years. The exception is
every 100 years when there is not a leap
year. This too has an exception every
400 years when there is a leap year.
Thus, 2000 is a leap year, and there will
be a Feb. 29, 2000. It is important that

the date change algorithms be clearly
defined and disseminated so everybody
working on this problem understands
them. Since these date algorithms will
first be tested Feb. 29, 2000, a zero-hour
testing plan is needed.

Summary
Any organization that does not have an
active Y2K program under way had best
get started immediately. The date when
the work will be completed is principally
determined by when the work starts. If
you are still studying, stop and get to
work. Make a plan at the same time, but
get to work! ◆

About the Author
Watts S. Humphrey is a
fellow at the Software
Engineering Institute
(SEI) of Carnegie Mel-
lon University, which he
joined in 1986. At the
SEI, he established the

Process Program, led initial development
of the Capability Maturity Model, intro-
duced the concepts of Software Process
Assessment and Software Capability
Evaluation, and most recently, the Personal
Software Process and Team Software Pro-
cess. Prior to joining the SEI, he spent 27
years with IBM in various technical execu-
tive positions, including management of
all IBM commercial software development
and director of programming quality and
process. He has master’s degrees in physics
from the Illinois Institute of Technology
and in business administration from the
University of Chicago. He is the 1993
recipient of the American Institute of
Aeronautics and Astronautics Software
Engineering Award. His most recent books
include Managing the Software Process
(1989), A Discipline for Software Engineer-
ing (1995), Managing Technical People
(1996), and Introduction to the Personal
Software Process (1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 29July 1998

Software in developmental sys-
tems causes three critical challenges
for the manager of a system pro-

gram office (SPO), the testers, and ulti-
mately the customers: software-induced
workload, software system complexity,
and software systems cost. For each of
these challenges, you could insert the
word “integrated” in place of “software”;
the result is the same. Even though these
three problems have an enormous effect
on the overall system, they are given
little attention because SPOs rarely real-
ize they exist. All three of these problems
are “program invisible”—they are rarely
tested or given any thought until after
they have become a serious difficulty for
the SPO. The problem is that these
software and integration problems are
some of the foremost reasons for cus-
tomer dissatisfaction and increased sys-
tems cost.

Software-Induced Workload
SPOs attempt to reduce software-in-
duced workload by adding software to
the system. Current hardware and the
missions this hardware supports are
extremely complex. Software is prima-
rily used to integrate and consolidate
complex systems so the equipment
operators can accomplish the mission
with decreased workload and increased
mission effectiveness. However, no one
has discovered a way to measure work-
load. All the measures we currently
have for workload are qualitative and
not quantitative.

In the past, engineers tried to use
quantitative measures such as altitude
and airspeed capture to measure work-
load; unfortunately, these measures have
nothing to do with workload. Take the
example of a test pilot who is required to

use digital instruments to keep an air-
craft within 10 feet above or below a
target altitude. According to conven-
tional engineering measures, the work-
load should not be great because the
event falls within the realm of possibil-
ity; nevertheless, the workload is ex-
tremely high—the pilot has to con-
stantly work the controls and interpret
instruments. Even a test pilot cannot
accomplish this task for long. After a
series of engineering analyses, tape altim-
eters were installed on the C-5, C-141,
F-111, and FB-111 aircraft. Aviators
who have flown these aircraft will testify
to their “low” workload after they have
become proficient in the systems; how-
ever, controlled analytical tests with
other aviators using standard instru-
ments always show that their perceptions
are inaccurate.

Because there is no usable measure
for workload, when we try to measure
workload, data from such analyses are
always suspect: The sample size is rarely
large, the statistical confidence is low,
and there is no method to quantitatively
measure the workload. Since we use
these analyses when evaluating whether
we want to reduce the number of crew
members in the cockpit, for instance, it
is not a decision based on analysis and
test; it is a hope based on politics and the
cost of the additional crew members.
The best examples of this are the MC-
130H aircraft and the current U.S. Air
Force glass cockpits and heads-up dis-
plays (HUDs). On the one hand, the
MC-130H is one of the best missionized
aircraft in the world. The pilot puts the
cue on the dot and can fly any terrain by
following profile programmed by the
navigator and the aircraft system. On the
other hand, it is a poor instrument air-

craft. The tape digital displays make it
extremely difficult to fly. In like fashion,
the glass cockpits and HUDs of Air
Force aircraft are based on similar tape
displays. These displays work well for
civil aircraft, which are flown from take-
off to touchdown on the autopilot, but
they are “workload sinks” for military
tactical flight. This workload problem
will continue to be an obstacle until a
method to quantitatively measure work-
load is discovered.

Fortunately, there is research toward
this end, but a majority of fielded and
future systems have been or are being
designed without regard to the work-
load involved. A final example is radio
frequency changes in aircraft that use
digital integrated radio systems. It is
simple to change a frequency using the
old analogue dial paradigm—the pilot
inputs the frequency by turning a dial
on the console. But in a software dis-
play, the pilot must first find the page
for frequency entry, then select the
proper place for the entry, and finally,
input the digits from a touch pad. This
is at least 10 times greater workload
than the analogue dialing system, yet it
is the new paradigm. If you multiply
the workload in this example by the
number of system inputs the pilot must
make to accomplish any mission, it will
demonstrate only a small fraction of the
magnitude of problems associated with
workload. It is enough to say that soft-
ware and integrated systems generally
have significantly increased workload
without a proportional increase in
mission effectiveness.

Software Complexity
The second great hidden problem in
software development is software com-

Software Surprise
The Three Invisible Problems of

Weapons System Software Development
Lt. Col. Lionel D. Alford Jr.

U.S. Air Force
This article describes how software-induced workload, software system complexity, and software systems
cost may cause rarely identified but long-lasting adverse effects to a program. If you cannot find these three
problems in your software development program, you may not realize what hit you until it is too late.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering July 1998

plexity. Because software is so intru-
sive—that is, it affects many systems—
it has become impossible to fully test
even the safety-related effects of the
software. When a new software build is
installed in an aircraft, unknowns are
rampant, and the “bugs” are rarely fully
discovered during flight test. Some
problems lie dormant until the systems
are well deployed. One example was an
operational flight program (OFP) re-
lease on the MC-130H. This release
was supposed to affect only the terrain-
following (TF) system of the aircraft.
The aircraft was released for flight un-
der the assumption that it would oper-
ate properly as long as the TF system
was not engaged. In the middle of a
training flight, during an engine-out
approach, the crew noticed that the
“ball” (primary flight coordination
instrument) was indicating sideslip in
the opposite direction. Because the TF
system was an integral part of the OFP,
a change to the TF system software
resulted in an erroneous reading in
another part of the system. If this OFP
had made it into the fleet, or an experi-
enced test crew had not been flying the
aircraft, it is likely there would have
been a smoking hole where a multimil-
lion-dollar aircraft once had been. This
is an extreme example, but there have
been hundreds of others in and out of
flight test.

Software and integrated systems
increase risk proportional to the increas-
ing code and increasing integration
complexity. In the C-21 aircraft (Lear
35), a pulled or popped oil pressure
circuit would cause the engine control
settings to indicate fire on an engine. An
operational crew discovered this problem
when they got two fire lights, one on
each engine. They had to shut down a
good engine and land short of their
destination. They were lucky to realize
there was a problem with the indicating
system before they shut down both en-
gines. The circuit breaker had popped
due to a faulty circuit problem, and a
sneak circuit caused the fire warning in
the indicating system. A $10 piece of
equipment gave the software false infor-

mation, and the crew and passengers
were placed at risk because testing had
not been done with the oil pressure
circuits pulled. This defect has been
fixed since the incident, but who knows
how many similar problems wait to be
found? Software and integration com-
plexity increase risk.

Software Systems Cost
The third problem is related to the first
two. Software always requires future
improvements and rewrites. Complex
software invariably comes with bugs that
are never entirely discovered. Modifica-
tions and fixes add more bugs, which
results in future modifications and fixes.
Rarely are software systems provided
with sufficient lifecycle funding for these
processes.

Software has become so intrusive
that the simplest components on many
aircraft incorporate some software. In
fact, such things as the clocks, circuit
breakers, and pressurization systems in
most modern aircraft incorporate or are
dependent on software for correct indi-
cation and operation. Most aircraft are
now to some degree fly-by-wire and
engine control-by-wire. This trend
toward software-driven controls and
systems shows no sign of change or
reversal. Therefore, funding must be
provided for any software system until
the decommission of the system—a
given that has not been acknowledged
by most services and program offices.
For example, there are numerous elec-
tronic warfare systems that are not
adequately funded for software changes
but are nevertheless going through
major changes. This has resulted in
serious program problems such as mul-
tiple OFPs in multiple versions being
deployed by more than one agency. The
resulting costs are much more than they
would have been if software changes
had been planned for the life of the
system. The examples of the MC-130H
and the C-21 resulted in unplanned
cost increases that could have radically
affected the safety of the aircraft if the
funding had not been made available.

Conclusion
The lessons to learn from these three
invisible software and integration prob-
lems are simple—their solutions are
not. First, try to evaluate workload
when developing a system. Attempt to
use nonintegrated systems when pos-
sible, especially when workload studies
indicate a problem. The Department of
Defense must fund research and devel-
opment to discover effective quantita-
tive workload measures. Second, plan
and test for as much as possible, and be
ready—during all program phases—for
software problems to rear their ugly
heads. Do not be content with minimal
software testing even when risk is low.
Finally, fund software for the life of the
system.

These three issues are critical, rarely
visible problems. They should be pri-
mary considerations during all SPO
phases. They may be invisible now, but
unless tamed, they will drive your pro-
gram and the capability of your weapons
system. ◆

About the Author
Lt. Col. Lionel D.
Alford Jr. is the chief
of the Special Opera-
tions Forces Test and
Evaluation Division,
Wright-Patterson Air
Force Base, Ohio. He

is an Air Force experimental test pilot
with over 3,600 hours in more than 40
different type aircraft and is a member of
the Society of Experimental Test Pilots.
Alford has served as the chief of the Test-
ing Commercial Aircraft for Military
Acquisition Office at Edwards Air Force
Base, Calif., holds an Airline Transport
Pilot license, and was the chief test pilot
for a number of Air Force acquisitions.
He is a graduate of the Defense Systems
Management College Advanced Program
Management Course 98-1. He has a
master’s degree in mechanical engineering
from Boston University and a bachelor’s
degree in chemistry from Pacific
Lutheran University.

ASC/LUQ
2275 D Street, Room 142
Wright-Patterson AFB, OH 45433
Voice: 937-255-9311
Fax: 937-255-0995
E-mail: Pilotlion@aol.com

Open Forum

CROSSTALK The Journal of Defense Software Engineering 31July 1998

BACKTALK

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3022
customer_service@stsc1.hill.af.mil

Features Coordinator Heather Winward
801-775-5555 ext. 3023
features@stsc1.hill.af.mil

Customer Service 801-777-8045
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069
STSC On-Line http://www.stsc.hill.af.mil

CROSSTALK On-Line http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html

ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045 DSN 777-8045
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher server
can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at 801-774-
6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for assistance, or
E-mail to portr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air Lo-
gistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force soft-
ware organizations identify, evaluate, and adopt technologies that will improve
the quality of their software products, their efficiency in producing them, and
their ability to accurately predict the cost and schedule of their delivery. CROSSTALK

is assembled, printed, and distributed by the Defense Automated Printing Ser-
vice, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development process.

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Awaiting the Big Delivery
You shouldn’t wait too long to fill your children’s lives with disappointment.

If you shelter them too much, they’ll never know how to handle life’s hard turns,
which is why when my daughter was born just a couple days ago, she wasn’t even
completely out of the womb when I decided to share what I’m sure everyone
considers the most painful national disappointment since Lloyd Bentsen was
replaced as secretary of the treasury: “I’m sorry, sweetie, but the CMMI initiative
will delay CMM, Version 2.0 for months and may even absorb it entirely.”

She cried at the news, but she’s doing better now. Her nearly two-year-old
brother handled the news fairly well, too, considering the impact capability ma-
turity models (CMMs) have had on his life. For months, our bedtime reading
has consisted of the latest ISO standard or someone’s new CMM (Me: “Honey,
he was out cold in six seconds flat—a new record!” My Wife: “No it isn’t. He’s
faking it to make you go away.”). Yet, somehow, he handled the news of this
earth-shattering delay with remarkable restraint: “Oh.” (yawn) [clunk!]

You’ll see essentially the same reaction from software developers. But I know
that somewhere, someone is miffed that they have to wait months to receive even
more mandated best practices they really should follow, but do not. In the mean-
time, these people will have to wait in line at the local library in the wing set
aside for all the good and not-so-good CMMs out there, including the T-CMM
(Testing CMM), the P-CMM (People CMM), the VMR-CMM (Vending Ma-
chine Renewal CMM), the CMRDEDBDMNMs-CMM (See, ’Em Are De Eedy
Beedy M&Ms CMM. Read it out loud. Har!), and The CMM of the Living
Dead (formerly the Project Management CMM). And I’m assuming that to rate
the quality and utility of all these CMMs, someone must have already developed
a CMM-CMM (the Capability Maturity Model Capability Maturity Model).

In light of all the available CMMs, I think the Department of Defense has
the right idea in wanting the Software Engineering Institute to combine a couple
of its own CMMs into a CMM Integration (CMMI). However, this has delayed
the release of the much-anticipated CMM, Version 2. The funny thing is, even
among big CMM fans, I’m having a hard time finding anyone disappointed
about this. The reason is simple: The Seventh Grade Pre-Algebra Principle.

Think back to your days in pre-algebra, a class of students ranging from the
pre-pubescent equivalent of CMM Level 5—algebra whizzes like Joe S., the
confident center of attention with his “dirty joke of the day”—to me at CMM
Level 1—as relaxed and confident as a 98-lb. weakling at a sand-kicking contest,
and who at year’s end couldn’t determine the area of a triangle any better than I
understood Joe’s jokes.

Now, imagine your teacher tells you the scheduled midterm exam has been
postponed indefinitely. What are your emotions? Disgust? Disappointment? If so,
I suppose that you were also one of the kids who left your corrected test in the
corner of your desk so everyone could see the score. Maybe assessments are nec-
essary, but if I’d heard there was going to be a delay in the next round of “tests,”
I’d feel like the class bully had just told me he’d decided not to beat me up after
all, and that he was looking for someone to get me out of my locker.

So lack of disappointment about the CMM delay is understandable. Besides,
a maturity level doesn’t tell the whole story. For example, sure, Mr. Level 5 Joe S.
showed up at our high school 10-year reunion as a high-ranking executive for one
of the world’s largest computer corporations, but what about Level 2 Sean M.?
He was a success, too. In a two-page Sports Illustrated lead-in photo he was
shown committing what must have been a second-degree felony in a story about
flagrant fouls in NCAA basketball. (He also once stuck gum in my hair, although
I’ve since reluctantly forgiven the unredeemable brute. And no, I didn’t fit in my
locker.) And little old me, CMM Level 1—not to toot my horn, but in college I
was editor of one of the first 100 newspapers to pick up “Dilbert” in syndication.

So don’t tell me there’s a correlation between maturity and success. I have
other examples, but I’d rather have you read them in my new Self-Rationalization
CMM. Check it out in the CMM section of your local library. – Lorin May

